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Abstract
In the realm of recommender systems (RS), Top-𝐾 ranking metrics
such as NDCG@𝐾 are the gold standard for evaluating recommen-
dation performance. However, during the training of recommen-
dation models, optimizing NDCG@𝐾 poses significant challenges
due to its inherent discontinuous nature and the intricate Top-𝐾
truncation. Recent efforts to optimize NDCG@𝐾 have either over-
looked the Top-𝐾 truncation or suffered from high computational
costs and training instability. To overcome these limitations, we
propose SoftmaxLoss@𝐾 (SL@𝐾), a novel recommendation loss
tailored for NDCG@𝐾 optimization. Specifically, we integrate the
quantile technique to handle Top-𝐾 truncation and derive a smooth
upper bound for optimizing NDCG@𝐾 to address discontinuity.
The resulting SL@𝐾 loss has several desirable properties, includ-
ing theoretical guarantees, ease of implementation, computational
efficiency, gradient stability, and noise robustness. Extensive ex-
periments on four real-world datasets and three recommendation
backbones demonstrate that SL@𝐾 outperforms existing losses
with a notable average improvement of 6.03%. The code is avail-
able at https://github.com/Tiny-Snow/IR-Benchmark.
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1 Introduction
Recommender systems (RS) [11, 16, 17, 34, 61, 63] have been widely
applied in various personalized services [45, 53]. The primary goal
of RS is to model users’ preferences on items and subsequently
retrieve a select number of items that users are most likely to
interact with [28, 37, 40]. In practice, RS typically display only𝐾 top-
ranked items to users based on their preference scores. Therefore,
Top-𝐾 ranking metrics, e.g., NDCG@𝐾 [25], are commonly used to
evaluate recommendation performance. Unlike full-ranking metrics,
e.g., NDCG [30], which assess the entire ranking list, Top-𝐾 ranking
metrics focus on the quality of the items ranked within the Top-𝐾
positions, making them more aligned with practical requirements.
Challenges. Despite the widespread adoption of the NDCG@𝐾
metric, its optimization presents two fundamental challenges:
• Top-𝐾 truncation: NDCG@𝐾 involves truncating the ranking list,
requiring the identification of which items occupy the Top-𝐾
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Figure 1: (a) Inconsistency between NDCG and NDCG@𝐾 . Ranking 1 and Ranking 2 represent two different ranking lists of the
same set of items, where red/white circles denote positive/negative items, respectively. While Ranking 1 has a better NDCG
than Ranking 2, it has worse NDCG@5. (b) Execution time comparison. LambdaLoss@𝐾 incurs a significantly higher (60 times)
computational overhead compared to SL and SL@𝐾 on the Electronic dataset (8K items). (c) Gradient distribution comparison.
LambdaLoss@𝐾 and SONG@𝐾 exhibit skewed long-tailed gradient distributions, where top-5% samples contribute over 90% of
the overall gradients. In contrast, SL@𝐾 achieves a more moderate gradient distribution, where top-5% samples contribute less
than 15% of the overall gradients. This leads to better data utilization and training stability.

positions. This necessitates sorting the entire item list, imposing
significant computational costs and optimization complexities.

• Discontinuity: NDCG@𝐾 is inherently discontinuous or flat ev-
erywhere in the space of model parameters, which severely im-
pedes the effectiveness of gradient-based optimization methods.

Existing works. Recent studies have introduced two types of
NDCG@𝐾 surrogate losses to tackle these challenges. However,
these approaches still exhibit significant limitations:
• A prominent line of work focuses on optimizing full-ranking
metrics like NDCG, without accounting for the complex Top-𝐾
truncation. Notable among these is Softmax Loss (SL) [69], which
serves as an upper bound for optimizing NDCG and demon-
strates state-of-the-art performance [4, 62, 68, 71]. Moreover, SL
enjoys practical advantages in terms of formulation simplicity
and computational efficiency. However, we argue that NDCG is
inconsistent with NDCG@𝐾 — NDCG@𝐾 focuses exclusively on
a few top-ranked items, while NDCG evaluates the entire rank-
ing list. This discrepancy means that optimizing NDCG does not
always yield improvements in NDCG@𝐾 and may even lead to
performance degradation, as illustrated in Figure 1a. Therefore,
without incorporating Top-𝐾 truncation, these NDCG surrogate
losses could inherently encounter performance bottlenecks.

• Few studies have explored incorporating Top-𝐾 truncation into
NDCG@𝐾 optimization. For example, LambdaLoss@𝐾 [29] in-
corporates truncation-aware lambda weights [5, 66] based on
ranking positions to optimize NDCG@𝐾 , exhibiting superior
performance compared to full-ranking surrogate losses like SL
[69] and LambdaLoss [66] in learning to rank tasks [40]. An-
other notable work is SONG@𝐾 [51], which employs a inge-
nious bilevel compositional optimization strategy [64] to opti-
mize NDCG@𝐾 with provable guarantees. While these methods
have proven effective in other tasks, we find them ineffective
for recommendation due to the large-scale and sparse nature
of RS data. Specifically, LambdaLoss@𝐾 requires sorting the
entire item list to calculate lambda weights, which is computa-
tionally impractical in real-world RS (cf. Figure 1b). Additionally,
both LambdaLoss@𝐾 and SONG@𝐾 exhibit a highly skewed

gradient distribution in RS — a few instances dominate the gradi-
ents, while the majority contribute negligibly (cf. Figure 1c). This
severely hinders effective data utilization and model training.

Ourmethod. Given the critical importance of optimizingNDCG@𝐾
and the inherent limitations of existing losses in RS, it is essential to
devise a more effective NDCG@𝐾 surrogate loss. In this paper, we
propose SoftmaxLoss@𝐾 (SL@𝐾), incorporating the following
two key strategies to address the aforementioned challenges:
• To address the Top-𝐾 truncation challenge, we employ the quan-
tile technique [3, 35]. Specifically, we introduce a Top-𝐾 quantile
for each user as a threshold score that separates the Top-𝐾 items
from the remainder. This technique transforms the complex Top-
𝐾 truncation into a simpler comparison between item scores and
quantiles, which circumvents the need for explicit calculations
of ranking positions. We further develop a Monte Carlo-based
quantile estimation strategy that achieves both computational
efficiency and theoretical precision guarantees.

• To overcome the discontinuity challenge, we derive an upper
bound for optimizing NDCG@𝐾 and relax it into a smooth sur-
rogate loss — SL@𝐾 . Our analysis proves that SL@𝐾 serves as a
tight upper bound for − log NDCG@𝐾 , ensuring its theoretical
effectiveness in Top-𝐾 recommendation.
Beyond its theoretical foundations, SL@𝐾 offers several practical

advantages: (i) Ease of implementation: Compared to SL, SL@𝐾 only
adds a quantile-based weight for each positive instance, making it
easy to implement and integrate into existing RS. (ii) Computational
efficiency: The adoption of quantile estimation and relaxation tech-
niques incurs minimal additional computational overhead over SL
(cf. Figure 1b). (iii)Gradient stability: SL@𝐾 exhibits more moderate
gradient distribution characteristics during training (cf. Figure 1c),
promoting effective data utilization and improving model train-
ing stability. (iv) Noise robustness: SL@𝐾 demonstrates enhanced
robustness against false positive noise [12, 67], i.e., interactions
arising from extraneous factors rather than user preferences.

Finally, to empirically validate the effectiveness of SL@𝐾 , we
conduct extensive experiments on four real-world recommenda-
tion datasets and three typical recommendation backbones. Ex-
perimental results demonstrate that SL@𝐾 achieves impressive
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performance improvements of 6.03% on average. Additional ex-
periments, including an exploration of varying hyperparameter 𝐾
and robustness evaluations, confirm that SL@𝐾 is not only well-
aligned with NDCG@𝐾 , but also exhibits superior resistance to
noise. Moreover, since SL@𝐾 is essentially a general ranking loss, it
can be seamlessly applied to other information retrieval (IR) tasks.
We extend our work to three different IR tasks, including learning
to rank (LTR) [49], sequential recommendation (SeqRec) [33], and
link prediction (LP) [38]. Empirical results validate the versatility
and effectiveness of SL@𝐾 across diverse IR tasks.
Contributions. In summary, our contributions are as follows:
• We highlight the significance of optimizing the Top-𝐾 ranking
metric NDCG@𝐾 in recommendation and reveal the limitations
of existing losses.

• We propose a novel loss function, SL@𝐾 , tailored for Top-𝐾
recommendation by integrating the quantile technique and ana-
lyzing the upper bound of NDCG@𝐾 .

• We conduct extensive experiments on various real-world datasets
and backbones, demonstrating the superiority of SL@𝐾 over
existing losses, achieving an average improvement of 6.03%.

• We extend SL@𝐾 to three different IR tasks, validating its versa-
tility and effectiveness beyond conventional recommendation.

2 Preliminaries
In this section, we first present the task formulation (Section 2.1),
then highlight the challenges in optimizing NDCG@𝐾 (Section 2.2),
and finally introduce Softmax Loss (SL) [69] while discussing its
limitations in optimizing NDCG@𝐾 (Section 2.3).

2.1 Top-𝐾 Recommendation
In this work, we focus on the Top-𝐾 recommendation from implicit
feedback, a widely-used scenario in recommender systems (RS)
[60, 74]. Specifically, given an RS with a user setU and an item set
I, let D = {𝑦𝑢𝑖 : 𝑢 ∈ U, 𝑖 ∈ I} denote the historical interactions
between users and items, where 𝑦𝑢𝑖 = 1 indicates that user 𝑢 has
interacted with item 𝑖 , and𝑦𝑢𝑖 = 0 indicates no interaction. For each
user𝑢, we denote P𝑢 = {𝑖 ∈ I : 𝑦𝑢𝑖 = 1} as the set of positive items,
andN𝑢 = I \P𝑢 as the set of negative items. The recommendation
task can be formulated as follows: learning user preferences from
dataset D and recommending the Top-𝐾 items that users are most
likely to interact with.

Formally, modern RS typically infer user preferences for items
with a learnable model 𝑠𝑢𝑖 = 𝑓Θ (𝑢, 𝑖), where 𝑓Θ (𝑢, 𝑖) : U × I → R
can be any flexible recommendation backbone with parameters Θ,
mapping user/item features (e.g., IDs) into their preference scores
𝑠𝑢𝑖 . Subsequently, the Top-𝐾 items with the highest scores 𝑠𝑢𝑖 are
retrieved as recommendations. In this work, we focus not on model
architecture design but instead on exploring the recommendation
loss. Given that the loss function guides the optimization direction
of models, its importance cannot be overemphasized [54].

2.2 NDCG@𝐾 Metric
Formulation of NDCG@𝐾 . Given the Top-𝐾 nature of RS, Top-𝐾
ranking metrics have been widely used to evaluate the recommen-
dation performance. This work focuses on the most representative

Top-𝐾 ranking metric, i.e., NDCG@𝐾 (Normalized Discounted Cu-
mulative Gain with Top-𝐾 truncation) [25, 30]. Formally, for each
user 𝑢, NDCG@𝐾 can be formulated as follows:

NDCG@𝐾 (𝑢) = DCG@𝐾 (𝑢)
IDCG@𝐾 (𝑢) , DCG@𝐾 (𝑢) =

∑︁
𝑖∈P𝑢

I(𝜋𝑢𝑖 ≤ 𝐾)
log2 (𝜋𝑢𝑖 + 1) ,

(2.1)
where I(·) is the indicator function, 𝜋𝑢𝑖 =

∑
𝑗∈I I(𝑠𝑢 𝑗 ≥ 𝑠𝑢𝑖 ) is the

ranking position of item 𝑖 for user 𝑢, and IDCG@𝐾 is a normalizing
constant representing the optimal DCG@𝐾 with an ideal ranking.

As observed, NDCG@𝐾 not only evaluates the number of posi-
tive items within the Top-𝐾 recommendations (similar to other Top-
𝐾 metrics, e.g., Recall@𝐾 and Precision@𝐾 ), but also accounts for
their ranking positions, i.e., higher-ranked items contribute more
to NDCG@𝐾 . This makes NDCG@𝐾 a more practical metric for
recommendation. Therefore, this work focuses on NDCG@K, while
we also observe that effectively optimizing NDCG@𝐾 can bring
improvements on other Top-𝐾 metrics like Recall@K (cf. Table 2).
Challenges in optimizingNDCG@𝐾 . While NDCG@𝐾 is widely
applied, directly optimizing it presents significant challenges:
• Challenge 1: Top-𝐾 truncation. NDCG@𝐾 involves truncating
the ranking list, as indicated by the term I(𝜋𝑢𝑖 ≤ 𝐾) in Equa-
tion (2.1). This implies the need to determine whether an item
is situated within the Top-𝐾 positions. Directly computing this
involves sorting all items for each user, which is computationally
impractical for RS. Moreover, this truncation introduces highly
complex gradient signals, complicating the optimization process.

• Challenge 2: Discontinuity. NDCG@𝐾 is a discontinuous metric
as it incorporates the indicator function and the ranking posi-
tions. Furthermore, this metric exhibits flat characteristics across
most regions of the parameter space, i.e., the metric remains
unchanged with minor perturbations of 𝑠𝑢𝑖 almost everywhere.
This results in the gradient being undefined or vanishing, posing
substantial challenges to the effectiveness of existing gradient-
based optimization methods [55]. Consequently, a smooth surro-
gate for NDCG@K is required to facilitate optimization.

2.3 Softmax Loss
Softmax Loss (SL) [69] has achieved remarkable success in RS.
Specifically, SL integrates a contrastive learning paradigm [41]. It
normalizes the preference scores to a multinomial distribution [9]
by Softmax operator, augmenting the scores of positive items as
compared to the negative ones [7]. Formally, SL is defined as:

LSL (𝑢) = −
∑︁
𝑖∈P𝑢

log
exp(𝑠𝑢𝑖/𝜏)∑︁

𝑗∈I
exp(𝑠𝑢 𝑗/𝜏)

=
∑︁
𝑖∈P𝑢

log ©­«
∑︁
𝑗∈I

exp(𝑑𝑢𝑖 𝑗/𝜏)ª®¬ ,
(2.2)

where 𝑑𝑢𝑖 𝑗 = 𝑠𝑢 𝑗 − 𝑠𝑢𝑖 is the negative-positive score difference,
and 𝜏 is a temperature coefficient controlling the sharpness of the
Softmax distribution.
Underlying rationale of SL. The success of SL can be attributed
to two main aspects: (i) Theoretical guarantees: SL has been proven
to serve as an upper bound of − log NDCG [4, 71], ensuring that
optimizing SL is consistent with optimizing NDCG, leading to state-
of-the-art (SOTA) performance [68]. (ii) Computational efficiency:
SL does not require accurately calculating the ranking positions,
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which is time-consuming. In fact, SL can be efficiently estimated
through negative sampling [68]. That is, the sum of item 𝑗 over the
entire item set I in Equation (2.2) can be approximated by sampling
a few negative items through uniform [19, 71] or in-batch [32, 69]
sampling. These advantages make SL a practical and effective choice
for NDCG optimization, demonstrating superior performance and
efficiency over other NDCG surrogate methods, including ranking-
based (e.g., Smooth-NDCG [10]), Gumbel-based (e.g., NeuralSort
[18]), and neural-based (e.g., GuidedRec [52]) methods. Nowadays,
SL has been extensively applied in practice, attracting considerable
research exploration with a substantial amount of follow-up work.
Limitations of SL. While SL serves as an effective surrogate loss
for NDCG, a significant gap remains betweenNDCG andNDCG@𝐾 ,
which limits its performance. As Figure 1a shows, optimizing NDCG
does not consistently improve NDCG@𝐾 and sometimes even leads
to performance drops. This limitation still exists in more advanced
SL-based losses, e.g., AdvInfoNCE [73], BSL [68], and PSL [71].
Therefore, how to bridge this gap and effectively model the Top-𝐾
truncation in recommendation loss remains an open challenge.

3 Methodology
To bridge the gap towards NDCG@𝐾 optimization, we propose
SoftmaxLoss@𝐾 (SL@𝐾), a novel NDCG@𝐾 surrogate loss. In
this section, we first present the derivations and implementation
details of SL@𝐾 (Section 3.1). Then, we analyze its properties and
discuss its advantages over existing losses (Section 3.2).

3.1 Proposed Loss: SoftmaxLoss@𝐾

The primary challenges in optimizing NDCG@𝐾 , as discussed in
Section 2.2, are the Top-𝐾 truncation and the discontinuity. To tackle
these challenges, we introduce the following two techniques.

3.1.1 Quantile-based Top-𝐾 Truncation. To address the Top-𝐾 trun-
cation challenge, we need to estimate the Top-𝐾 truncation term
I(𝜋𝑢𝑖 ≤ 𝐾), which involves estimating the ranking position 𝜋𝑢𝑖
for each interaction (𝑢, 𝑖). However, directly estimating 𝜋𝑢𝑖 is par-
ticularly challenging. Sorting all items for each user to calculate
𝜋𝑢𝑖 will incur a computational cost of 𝑂 ( |U||I| log |I |), which is
impractical for real-world RS with immense user and item scales.

To overcome this, we borrow the quantile technique [20, 35].
Specifically, we introduce a Top-𝐾 quantile 𝛽𝐾𝑢 for each user 𝑢, i.e.,

𝛽𝐾𝑢 := inf{𝑠𝑢𝑖 : 𝜋𝑢𝑖 ≤ 𝐾}. (3.1)

This quantile acts as a threshold score that separates the Top-𝐾
items from the rest. Specifically, if an item’s score is larger than
the quantile, i.e., 𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢 , then item 𝑖 is Top-𝐾 ranked; conversely,
𝑠𝑢𝑖 < 𝛽𝐾𝑢 implies that item 𝑖 is outside the Top-𝐾 positions. There-
fore, the Top-𝐾 truncation term can be rewritten as:

I(𝜋𝑢𝑖 ≤ 𝐾) = I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢 ) . (3.2)

This transformation reduces the complex truncation to a simple
comparison between the preference score 𝑠𝑢𝑖 and the quantile 𝛽𝐾𝑢 ,
thus avoiding the need to directly estimate 𝜋𝑢𝑖 . This makes the
Top-𝐾 truncation both computationally efficient and easy to opti-
mize. To handle the complexities of quantile estimation, we further
propose a simple Monte Carlo-based quantile estimation strategy in
Section 3.1.3, which guarantees both high efficiency and precision.

Notably, while quantile-based techniques have been explored in
previous works – e.g., AATP [3] employs quantiles to optimize Top-
𝐾 accuracy, and SONG@𝐾 [51] adopts quantile-related thresholds
for bilevel compositional optimization – we adapt this approach
specifically for NDCG@𝐾 optimization in the context of recommen-
dation. Specifically, we propose a novel tailored recommendation
loss and a dedicated quantile estimation strategy, which address the
unique challenges in RS. Readers can refer to Sections 3.2.2 and 5
for a detailed comparison between our proposed loss and existing
methods, as well as a discussion of their limitations.

3.1.2 Smooth Surrogate for NDCG@𝐾 . To tackle the discontinuity
challenge, we proceed to relax the discontinuous NDCG@𝐾 into a
smooth surrogate. Specifically, our approach focuses on deriving
a smooth upper bound for − log DCG@𝐾 , since optimizing this
upper bound is equivalent to lifting NDCG@𝐾1 [69, 71]. To ensure
mathematical well-definedness, we make a simple assumption that
DCG@𝐾 is non-zero, which is practical in optimization2.
Upper bound derivation. While several successful examples
(e.g., SL) of relaxing full-ranking metric DCG exist as references
[66, 69, 71], special care must be taken to account for the differ-
ences in DCG@𝐾 introduced by the Top-𝐾 truncation. Based on
the quantile technique and some specific relaxations, we can derive
an upper bound for − log DCG@𝐾 as follows:

− log DCG@𝐾 (𝑢)

(3.2)
= − log ©­«

∑︁
𝑖∈P𝑢

I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢 )
1

log2 (𝜋𝑢𝑖 + 1)
ª®¬ (3.3a)

①
≤ − log ©­«

∑︁
𝑖∈P𝑢

I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢 )
1
𝜋𝑢𝑖

ª®¬ (3.3b)

= − log ©­«
∑︁
𝑖∈P𝑢

I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢 )
𝐻𝐾𝑢

1
𝜋𝑢𝑖

ª®¬ − log𝐻𝐾𝑢 (3.3c)

②
≤

∑︁
𝑖∈P𝑢

I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢 )
𝐻𝐾𝑢

(
− log

1
𝜋𝑢𝑖

)
− log𝐻𝐾𝑢 (3.3d)

③
≤

∑︁
𝑖∈P𝑢

I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢 ) log𝜋𝑢𝑖 , (3.3e)

where 𝐻𝐾𝑢 =
∑
𝑖∈P𝑢 I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢 ) is the number of Top-𝐾 positive

items (a.k.a. hits) for user 𝑢. Equation (3.3c) is well-defined since
𝐻𝐾𝑢 ≥ 1 due to our non-zero assumption3. Several important relax-
ations are applied in Equation (3.3): ① is due to log2 (𝜋𝑢𝑖 + 1) ≤ 𝜋𝑢𝑖 ;
② is due to Jensen’s inequality [31]; ③ is due to 𝐻𝐾𝑢 ≥ 1.

The motivation behind the relaxations ① and ② is to simplify
the DCG term 1/log2 (𝜋𝑢𝑖 + 1), which includes the ranking position
𝜋𝑢𝑖 in the denominator. It is important to note that the ranking
position 𝜋𝑢𝑖 is intricate and challenging to estimate accurately. Re-
taining 𝜋𝑢𝑖 in the denominator could exacerbate the optimization

1Note that optimizing DCG@𝐾 and NDCG@𝐾 is equivalent, as the normalization
term IDCG@𝐾 is a constant.
2This assumption is conventional in RS [4, 69, 71]. Note that DCG@𝐾 = 0 suggests the
worst result. During training, the scores of positive instances are rapidly elevated. As
a result, there is almost always at least one positive item within the Top-𝐾 positions,
ensuring DCG@𝐾 > 0. (cf. Appendix B.2 for empirical validation).
3Since DCG@𝐾 > 0, there is at least one Top-𝐾 hit 𝑖 such that 𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢 .
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difficulty, potentially leading to high estimation errors and numeri-
cal instability. SONG@𝐾 [51] is a representative example. Although
SONG@𝐾 utilizes a sophisticated compositional optimization tech-
nique [64], it still performs poorly in RS due to its highly skewed
gradient distributions (cf. Figure 1c and Table 2). Therefore, we fol-
low the successful paths of SL [69] and PSL [71], aiming to simplify
this complex structure. This significantly facilitates gradient-based
optimization and supports sampling-based estimation. Moreover,
in relaxation ③, we drop the term 𝐻𝐾𝑢 to reduce computational
complexity. While retaining this term could potentially lead to im-
proved performance, we empirically find that the gains aremarginal,
whereas the additional computational overhead is significant.

Furthermore, we can express the above upper bound in terms
of the preference scores. Given the Heaviside step function 𝛿 (𝑥) =
I(𝑥 ≥ 0) [71], recall that 𝜋𝑢𝑖 =

∑
𝑗∈I I(𝑠𝑢 𝑗 ≥ 𝑠𝑢𝑖 ) =

∑
𝑗∈I 𝛿 (𝑑𝑢𝑖 𝑗 ),

where 𝑑𝑢𝑖 𝑗 = 𝑠𝑢 𝑗 − 𝑠𝑢𝑖 , we can rewrite the upper bound (3.3e) as:

(3.3e) =
∑︁
𝑖∈P𝑢

𝛿 (𝑠𝑢𝑖 − 𝛽𝐾𝑢 ) · log ©­«
∑︁
𝑗∈I

𝛿 (𝑑𝑢𝑖 𝑗 )
ª®¬ . (3.4)

Smoothing Heaviside function. Note that Equation (3.4) is still
discontinuous due to the Heaviside step function 𝛿 (·). To address
this, following the conventional approach, we approximate 𝛿 (·) by
two continuous activation functions 𝜎𝑤 (·) and 𝜎𝑑 (·), resulting in
the following recommendation loss — SoftmaxLoss@𝐾 (SL@𝐾):

LSL@𝐾 (𝑢) =
∑︁
𝑖∈P𝑢

𝜎𝑤 (𝑠𝑢𝑖 − 𝛽𝐾𝑢 )︸             ︷︷             ︸
weight term: 𝑤𝑢𝑖

· log ©­«
∑︁
𝑗∈I

𝜎𝑑 (𝑑𝑢𝑖 𝑗 )
ª®¬︸                    ︷︷                    ︸

SL term: LSL (𝑢,𝑖 )

. (3.5)

To approximate the Heaviside step function 𝛿 (·), two conventional
activation functions are widely adopted — the exponential function
𝑒𝑥/𝜏𝑑 and the sigmoid function 1/(1 + 𝑒−𝑥/𝜏𝑤 ), where 𝜏𝑑 and 𝜏𝑤
are temperature hyperparameters. The exponential function serves
as an upper bound of 𝛿 (·) and has been employed in SL, while
the sigmoid function provides a tighter approximation of 𝛿 (·) and
has been utilized in BPR [54]. Here we select 𝜎𝑑 as exponential
and 𝜎𝑤 as sigmoid in Equation (3.5). This configuration guaran-
tees that SL@𝐾 serves as a tight upper bound for − log DCG@𝐾
(cf. Theorem 3.2 in Section 3.2). In contrast, if both activations are
chosen as sigmoid, the upper bound relation does not hold; if both
are chosen as exponential, the bound is not as tight as in our setting.
For detailed discussions, please refer to Appendix B.1.

As shown in Equation (3.5), SL@𝐾 can be interpreted as a spe-
cific weighted Softmax Loss, where each positive interaction (𝑢, 𝑖)
in SL (cf. Equation (2.2)) is assigned a quantile-based weight 𝑤𝑢𝑖 .
Intuitively,𝑤𝑢𝑖 serves to assign larger weights to positive instances
with higher scores 𝑠𝑢𝑖 , emphasizing those ranked within the Top-𝐾
positions during optimization (i.e., those whose scores exceed the
quantile). This aligns with the principle of Top-𝐾 ranking metrics.

3.1.3 Top-𝐾 Quantile Estimation. Now the question lies in how to
estimate the Top-𝐾 quantile 𝛽𝐾𝑢 efficiently and accurately. While
quantile estimation [2, 20, 35] has been extensively studied in the
field of statistics, these methods may not be appropriate in our sce-
narios. Given that the quantile evolves during training and the large
scale of item set in RS, SL@𝐾 places high demands on estimation

(a) Quantile distribution.
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Figure 2: (a) Quantile distribution. The distributions of ideal
quantiles 𝛽20

𝑢 and the positive/negative scores are illustrated
using Kernel Density Estimation (KDE) [47]. (b) Quantile
estimation. The estimated quantile 𝛽20

𝑢 and ideal quantile 𝛽20
𝑢

are illustrated. The estimation error is 0.06 ± 0.03.

efficiency. To address this, our work develops a simple Monte Carlo-
based estimation strategy. Specifically, we randomly sample a small
set of 𝑁 items for each user and estimate the Top-𝐾 quantile among
these sampled items. The computational complexity of this method
is 𝑂 ( |U|𝑁 log𝑁 ), as it only requires sorting the sampled items,
which significantly reduces the computational overhead compared
to sorting the entire item set (i.e., 𝑂 ( |U||I| log |I |)).
Theoretical guarantees. Despite its simplicity, our quantile es-
timation strategy has theoretical guarantees. To ensure rigor and
facilitate generalization to the continuous case, we follow the con-
ventional definition of the 𝑝-th quantile [2]. In the context of RS,
the 𝑝-th quantile is exactly the Top-(1 − 𝑝) |I| quantile. We have:

Theorem 3.1 (Monte Carlo quantile estimation). Given the cu-
mulative distribution function (c.d.f. ) 𝐹𝑢 (𝑠) of the preference scores
𝑠𝑢𝑖 for user 𝑢, for any 𝑝 ∈ (0, 1), the 𝑝-th quantile is defined as
𝜃
𝑝
𝑢 := 𝐹−1

𝑢 (𝑝) = inf{𝑠 : 𝐹𝑢 (𝑠) ≥ 𝑝}. In Monte Carlo quantile estima-

tion, we randomly sample 𝑁 preference scores {𝑠𝑢 𝑗 }𝑁𝑗=1
i.i.d.∼ 𝐹𝑢 (𝑠).

The estimated 𝑝-th quantile is defined as 𝜃𝑝𝑢 := 𝐹−1
𝑢 (𝑝), where 𝐹𝑢 (𝑠) =

1
𝑁

∑𝑁
𝑗=1 I(𝑠𝑢 𝑗 ≤ 𝑠) is the empirical c.d.f. of the sampled scores. Then,

for any 𝜀 > 0, we have

Pr
(���𝜃𝑝𝑢 − 𝜃𝑝𝑢

��� > 𝜀) ≤ 4𝑒−2𝑁𝛿2
𝜀 , (3.6)

where 𝛿𝜀 = min{𝐹𝑢 (𝜃𝑝𝑢 + 𝜀) − 𝑝, 𝑝 − 𝐹𝑢 (𝜃𝑝𝑢 − 𝜀)}. Specifically, in the
discrete RS scenarios, the Top-𝐾 quantile 𝛽𝐾𝑢 is exactly 𝜃1−𝐾/|I |

𝑢 .

The proof is provided in Appendix C.1. Theorem 3.1 provides
the theoretical foundation for sampling-based quantile estimation —
the error between the estimated and ideal quantile is bounded by a
function that decreases exponentially with the sample size 𝑁 . This
implies that the Top-𝐾 quantile 𝛽𝐾𝑢 can be estimated to arbitrary
precision given a sufficiently large 𝑁 .
Practical strategies. In practice, our Monte Carlo-based quantile
estimation strategy can be further improved by leveraging the prop-
erties of RS. As shown in Figure 2a, the scores of positive items
are typically much higher than those of negative items, and the
Top-𝐾 quantile is often located within the range of positive item
scores. Therefore, it is more effective to retain all positive instances
and randomly sample a small set of negative instances for quantile
estimation. This strategy, though simple, yields more accurate re-
sults. Figure 2b provides an example of estimated quantiles across
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users on the Electronic dataset, with a sample size of 𝑁 = 1000.
The estimated quantile 𝛽20

𝑢 closely matches the ideal quantile 𝛽20
𝑢 ,

with an average deviation of only 0.06. Further analyses and results
can be found in Appendix C. The overall optimization process for
SL@𝐾 is also summarized in Algorithm C.1.

3.2 Analyses of SL@𝐾

3.2.1 Properties of SL@𝐾 . Our proposed SL@𝐾 offers several de-
sirable properties (P), as summarized below:
(P1) Theoretical guarantees. We establish a theoretical connec-
tion between SL@𝐾 and NDCG@𝐾 as follows:

Theorem 3.2 (NDCG@𝐾 surrogate). For any user 𝑢, if the Top-𝐾
hits 𝐻𝐾𝑢 > 14, SL@𝐾 serves as an upper bound of − log DCG@𝐾 ,
i.e.,

− log DCG@𝐾 (𝑢) ≤ LSL@𝐾 (𝑢). (3.7)

When the Top-𝐾 hits 𝐻𝐾𝑢 = 1, a marginally looser yet effective bound
holds, i.e., − 1

2 log DCG@𝐾 (𝑢) ≤ LSL@𝐾 (𝑢).

The proof is provided in Appendix B.2. Theorem 3.2 reveals
that minimizing SL@𝐾 leads to improved NDCG@𝐾 , ensuring the
theoretical effectiveness of SL@𝐾 in Top-𝐾 recommendation.
(P2) Ease of implementation. Compared to SL, SL@𝐾 introduces
only a quantile-based weight𝑤𝑢𝑖 . Given the widespread adoption
of SL in RS, SL@𝐾 can be seamlessly integrated into existing rec-
ommendation frameworks with minimal modifications.
(P3) Computational efficiency. The utilization of the Monte
Carlo strategy for quantile estimation in SL@𝐾 (cf. Section 3.1.3)
ensures computational efficiency. The conventional SL has a time
complexity of 𝑂 ( |U|𝑃𝑁 ), where 𝑃 denotes the average number of
positive items per user, and 𝑁 denotes the sample size satisfying
𝑁 ≪ |I|. Compared to SL, SL@𝐾 only introduces an additional
complexity of 𝑂 ( |U|𝑁 log𝑁 ) for quantile estimation, which is
typically negligible in practice (cf. Figure 1b).
(P4) Gradient stability. SL@𝐾 exhibits a moderate gradient dis-
tribution comparable to that of SL (cf. Figure 1c), which contributes
to its training stability and data utilization effectiveness. This prop-
erty is mainly attributed to the bounded weight𝑤𝑢𝑖 ∈ (0.1, 1) with
sigmoid temperature 𝜏𝑤 ≥ 1, thus not significantly amplifying
gradient variance. In contrast, other NDCG@𝐾 surrogate losses,
including LambdaLoss@𝐾 [29] and SONG@𝐾 [51], are usually
hindered by the excessively long-tailed gradients (cf. Figure 1c).
(P5) Noise robustness. False positive noise [12] is prevalent in RS,
arising from various factors such as clickbait [65], item position bias
[27], or accidental interactions [1]. Recent studies have shown that
such noise can significantly mislead model training and degrade
performance [67]. Interestingly, the introduction of weight𝑤𝑢𝑖 in
SL@𝐾 helps mitigate this issue. In fact, the false positives, which
often resemble negative instances, tend to have lower preference
scores 𝑠𝑢𝑖 than the true positives. As a result, these noisy instances
typically receive smaller weights𝑤𝑢𝑖 (which are positively corre-
lated with 𝑠𝑢𝑖 ) and contribute less in model training. This enhances
the model’s robustness against false positive noise, as demonstrated
in the gradient analysis in Appendix B.3.

4The assumption 𝐻𝐾𝑢 > 1 is commonly satisfied in practice, as the training process
tends to increase the scores of positive items, making them typically larger than those
of negative items. Appendix B.2 provides further empirical validation.

Table 1: Dataset statistics. Refer to Appendix D.1 for details.

Dataset #Users #Items #Interactions Density

Health 1,974 1,200 48,189 0.02034
Electronic 13,455 8,360 234,521 0.00208
Gowalla 29,858 40,988 1,027,464 0.00084
Book 135,109 115,172 4,042,382 0.00026

3.2.2 Comparison with Existing Losses. In this subsection, we delve
into the connections and differences between SL@𝐾 and other
closely related losses to provide further insights:
SL@𝐾 vs. SoftmaxLoss (SL). As discussed in Section 3.1.2, SL@𝐾
can be viewed as a specific weighted SL [69]. Although SL demon-
strates theoretical advantages due to its close connection with
NDCG, as well as practical benefits such as concise formulation
and computational efficiency, it does not account for the Top-𝐾
truncation. Our SL@𝐾 bridges this gap by accompanying each term
of SL with a quantile-based weight. As such, SL@𝐾 inherits the ad-
vantages of SL, while introducing additional merits, e.g., theoretical
connections to NDCG@𝐾 and robustness to false positive noise.
SL@𝐾 vs. LambdaLoss@𝐾 and SONG@𝐾 . LambdaLoss@𝐾 [29]
and SONG@𝐾 [51] take into account the Top-𝐾 truncation and have
shown promising results in other fields like document retrieval [40].
However, we find that their effectiveness in RS is compromised,
particularly given the large item space and sparse interactions.
Specifically, both of them suffer from the issue of long-tailed gra-
dients due to their inherent design. The gradients are dominated
by a few instances, while the majority of instances have negligi-
ble contributions, which may lead to data utilization inefficiency
and optimization instability. In contrast, SL@𝐾 exhibits moderate
gradients by leveraging the quantile technique and appropriate
relaxations, which addresses these issues and achieves superior
performance (cf. Figure 1c).

Beyond the gradient instability, LambdaLoss@𝐾 also faces ad-
ditional challenges on computational efficiency. Specifically, it re-
quires calculating exact rankings, which is computationally imprac-
tical in RS. Even worse, the skewed gradient distribution hinders the
sampling-based strategy to reduce computational overhead, since
the gradients of sampled instances may be either vanishingly small
or excessively large, leading to unstable optimization. In contrast,
SL@𝐾 is both theoretically sound and computationally efficient,
making it a more suitable choice for RS.

Notably, while SONG@𝐾 also employs a threshold to tackle
Top-𝐾 truncation similar to SL@𝐾 ’s quantile, SL@𝐾 differs sig-
nificantly from SONG@𝐾 in two aspects: (i) we follow the suc-
cessful approaches of SL [69] and PSL [71] to simplify and smooth
NDCG@𝐾 , which facilitates sampling-based estimation and opti-
mization, while SONG@𝐾 employs a compositional optimization
technique, which may not be effective in RS. (ii) we employ a simple
sampling-based strategy to estimate the threshold (quantile) with
theoretical guarantees, as opposed to the complex bilevel optimiza-
tion in SONG@𝐾 . These differences contribute to the significant
superiority of SL@𝐾 over SONG@𝐾 in terms of both recommen-
dation performance and practical applicability. Appendix A gives a
detailed discussion on these two losses.
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Table 2: Top-20 recommendation performance comparison of SL@𝐾 with existing losses. The best results are highlighted in
bold, and the best baselines are underlined. "Imp." denotes the improvement of SL@𝐾 over the best baseline.

Backbone Loss
Health Electronic Gowalla Book

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

MF

BPR 0.1627 0.1234 0.0816 0.0527 0.1355 0.1111 0.0665 0.0453
GuidedRec 0.1568 0.1093 0.0644 0.0385 0.1135 0.0863 0.0518 0.0361
SONG@20 0.0874 0.0650 0.0708 0.0444 0.1237 0.0970 0.0747 0.0542
LLPAUC 0.1644 0.1209 0.0821 0.0499 0.1610 0.1189 0.1150 0.0811
SL 0.1719 0.1261 0.0821 0.0529 0.2064 0.1624 0.1559 0.1210
AdvInfoNCE 0.1659 0.1237 0.0829 0.0527 0.2067 0.1627 0.1557 0.1172
BSL 0.1719 0.1261 0.0834 0.0530 0.2071 0.1630 0.1563 0.1212
PSL 0.1718 0.1268 0.0838 0.0541 0.2089 0.1647 0.1569 0.1227
SL@20 (Ours) 0.1823 0.1390 0.0901 0.0590 0.2121 0.1709 0.1612 0.1269

Imp. % +6.05% +9.62% +7.52% +9.06% +1.53% +3.76% +2.74% +3.42%

LightGCN

BPR 0.1618 0.1203 0.0813 0.0524 0.1745 0.1402 0.0984 0.0678
GuidedRec 0.1550 0.1073 0.0657 0.0393 0.0921 0.0686 0.0468 0.0310
SONG@20 0.1353 0.0960 0.0816 0.0511 0.1261 0.0968 0.0820 0.0573
LLPAUC 0.1685 0.1207 0.0831 0.0507 0.1616 0.1192 0.1147 0.0810
SL 0.1691 0.1235 0.0823 0.0526 0.2068 0.1628 0.1567 0.1220
AdvInfoNCE 0.1706 0.1264 0.0823 0.0528 0.2066 0.1625 0.1568 0.1177
BSL 0.1691 0.1236 0.0823 0.0526 0.2069 0.1628 0.1568 0.1220
PSL 0.1701 0.1270 0.0830 0.0536 0.2086 0.1648 0.1575 0.1233
SL@20 (Ours) 0.1783 0.1371 0.0903 0.0591 0.2128 0.1729 0.1625 0.1280

Imp. % +4.51% +7.95% +8.66% +10.26% +2.01% +4.92% +3.17% +3.81%

XSimGCL

BPR 0.1496 0.1108 0.0777 0.0508 0.1966 0.1570 0.1269 0.0905
GuidedRec 0.1539 0.1088 0.0760 0.0473 0.1685 0.1277 0.1275 0.0951
SONG@20 0.1378 0.0948 0.0525 0.0320 0.1367 0.0985 0.1281 0.0964
LLPAUC 0.1519 0.1083 0.0781 0.0481 0.1632 0.1200 0.1363 0.1008
SL 0.1534 0.1113 0.0772 0.0490 0.2005 0.1570 0.1549 0.1207
AdvInfoNCE 0.1499 0.1072 0.0776 0.0489 0.2010 0.1564 0.1568 0.1179
BSL 0.1649 0.1201 0.0800 0.0507 0.2037 0.1597 0.1550 0.1207
PSL 0.1579 0.1143 0.0801 0.0507 0.2037 0.1593 0.1571 0.1228
SL@20 (Ours) 0.1753 0.1332 0.0869 0.0571 0.2095 0.1717 0.1624 0.1277

Imp. % +6.31% +10.91% +8.49% +12.40% +2.85% +7.51% +3.37% +3.99%

4 Experiments
We aim to answer the following research questions (RQs):
• RQ1: How does SL@𝐾 perform compared with existing losses?
• RQ2: Does SL@𝐾 exhibit consistent improvements across dif-
ferent NDCG@𝐾 metrics with varying 𝐾?

• RQ3: Does SL@𝐾 exhibit robustness against false positive noise?
• RQ4: Can SL@𝐾 be effectively applied to other information
retrieval (IR) tasks?

4.1 Experimental Setup
Datasets. To ensure fair comparisons, our experimental setup
closely follows the prior work of Wu et al. [68] and Yang et al.
[71]. We conduct experiments on four widely-used datasets: Health
[22, 44], Electronic [22, 44], Gowalla [14], and Book [22, 44]. Addi-
tionally, given the inefficiency of LambdaLoss@𝐾 [29] in handling
these large datasets, we further evaluate its performance on two
relatively smaller datasets, i.e., MovieLens [21] and Food [43]. Refer
to Table 1 and Appendix D.1 for detailed dataset descriptions.
Recommendation backbones. Following the settings in Yang
et al. [71], we evaluate the proposed losses on three backbones: MF

[36] (classic Matrix Factorization model), LightGCN [24] (SOTA
graph-based model), and XSimGCL [72] (SOTA contrastive-based
model). The implementation details can be found in Appendix D.3.
Baseline losses. We compare SL@𝐾 with the following baselines:
(i) Pairwise loss (BPR [54]); (ii) NDCG surrogate losses (GuidedRec
[52] and Softmax Loss (SL) [69]); (iii) NDCG@𝐾 surrogate losses
(LambdaLoss@𝐾 [29] and SONG@𝐾 [51]); (iv) Partial AUC surro-
gate loss (LLPAUC [59]); (v) Advanced SL-based losses (AdvInfoNCE
[73], BSL [68], and PSL [71]). Refer to Appendix D.4 for details.
Hyperparameter settings. For fair comparisons, SL@𝐾 adopts
the same temperature parameter 𝜏𝑑 as the optimal 𝜏 in SL. SL@𝐾
also uses the same negative sampling strategy as SL for both training
and quantile estimation with sample size𝑁 = 1000. For all baselines,
we follow the hyperparameter settings provided in original papers
and further tune them to achieve the best performance. We provide
the details in Appendix D.4, optimal hyperparameters in Appendix
D.5, and supplementary results in Appendix E.
Information Retrieval Tasks. To extend SL@𝐾 to other fields,
we adapt it to three different IR tasks: (i) Learning to rank (LTR),
aiming to order a list of candidate items according to their relevance
to a given query; (ii) Sequential recommendation (SeqRec),
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Table 3: NDCG@𝐾 (D@𝐾) comparisons with varying 𝐾 on Health and Electronic datasets and MF backbone. The best results
are highlighted in bold, and the best baselines are underlined. "Imp." denotes the improvement of SL@𝐾 over the best baseline.

Method
Health Electronic

D@5 D@10 D@20 D@50 D@75 D@100 D@5 D@10 D@20 D@50 D@75 D@100

BPR 0.0940 0.1037 0.1234 0.1621 0.1804 0.1925 0.0345 0.0419 0.0527 0.0690 0.0777 0.0845
GuidedRec 0.0769 0.0881 0.1093 0.1484 0.1671 0.1811 0.0228 0.0294 0.0385 0.0551 0.0635 0.0703
SONG 0.0353 0.0392 0.0488 0.0709 0.0834 0.0930 0.0316 0.0393 0.0493 0.0661 0.0744 0.0803
SONG@𝐾 0.0503 0.0535 0.0650 0.0896 0.1037 0.1135 0.0276 0.0349 0.0444 0.0581 0.0651 0.0706
LLPAUC 0.0887 0.0996 0.1209 0.1592 0.1765 0.1892 0.0305 0.0388 0.0499 0.0686 0.0778 0.0848
SL 0.0922 0.1037 0.1261 0.1620 0.1791 0.1924 0.0353 0.0430 0.0529 0.0696 0.0783 0.0845
AdvInfoNCE 0.0926 0.1038 0.1237 0.1608 0.1789 0.1920 0.0341 0.0423 0.0527 0.0697 0.0782 0.0843
BSL 0.0922 0.1037 0.1261 0.1620 0.1791 0.1924 0.0344 0.0425 0.0530 0.0691 0.0776 0.0843
PSL 0.0940 0.1048 0.1268 0.1613 0.1789 0.1912 0.0356 0.0434 0.0541 0.0700 0.0784 0.0845
SL@𝐾 (Ours) 0.1080 0.1190 0.1390 0.1736 0.1916 0.2035 0.0402 0.0484 0.0590 0.0760 0.0844 0.0908

Imp. % +14.89% +13.55% +9.62% +7.09% +6.21% +5.71% +12.92% +11.52% +9.06% +8.57% +7.65% +7.08%

Table 4: Performance exploration of SL@𝐾 on NDCG@𝐾 ′ with varying 𝐾 and 𝐾 ′. The best results are highlighted in bold.

SL@𝐾
Health Electronic

D@5 D@10 D@20 D@50 D@75 D@100 D@5 D@10 D@20 D@50 D@75 D@100

SL@5 0.1080 0.1180 0.1379 0.1724 0.1906 0.2032 0.0402 0.0480 0.0583 0.0753 0.0839 0.0900

SL@10 0.1077 0.1190 0.1377 0.1734 0.1909 0.2028 0.0400 0.0484 0.0583 0.0755 0.0839 0.0901

SL@20 0.1076 0.1188 0.1390 0.1733 0.1909 0.2029 0.0400 0.0483 0.0590 0.0759 0.0837 0.0900

SL@50 0.1062 0.1167 0.1364 0.1736 0.1901 0.2020 0.0398 0.0481 0.0587 0.0760 0.0842 0.0907

SL@75 0.1073 0.1179 0.1387 0.1734 0.1916 0.2031 0.0397 0.0481 0.0587 0.0759 0.0844 0.0907

SL@100 0.1071 0.1177 0.1375 0.1727 0.1904 0.2035 0.0399 0.0481 0.0587 0.0759 0.0843 0.0908

SL (@∞) 0.0922 0.1037 0.1261 0.1620 0.1791 0.1924 0.0353 0.0430 0.0529 0.0696 0.0783 0.0845

focusing on next item prediction in a user’s interaction sequence;
and (iii) Link prediction (LP), predicting links between two nodes
in a graph. We closely follow the experimental settings in prior
work [33, 38, 49] and provide the details in Appendix D.6.

4.2 Performance Comparison
SL@𝐾 vs. Baselines (RQ1). Table 2 presents the performance
comparison of SL@𝐾 against existing losses. As shown, SL@𝐾 con-
sistently outperforms all competing losses across various datasets
and backbones. The improvements are substantial, with an average
increase of 6.03% over the best baselines. This improvement can be
attributed to the closer alignment of SL@𝐾 with NDCG@𝐾 , high-
lighting the importance of explicitly modeling Top-𝐾 truncation
during optimization, as opposed to NDCG surrogate losses. Notably,
SL@𝐾 also demonstrates strong performance on Recall@𝐾 . This is
because optimizing NDCG@𝐾 naturally increases the positive hits
in Top-𝐾 positions, thereby enhancing Recall@𝐾 performance.
SL@𝐾 vs. NDCG@𝐾 surrogate losses (RQ1). We further com-
pare SL@𝐾 with existingNDCG@𝐾 surrogate losses, i.e., SONG@𝐾
and LambdaLoss@𝐾 , in Tables 2 and 17. Although these losses are
also designed to optimize NDCG@𝐾 , our experiments show that
SL@𝐾 consistently outperforms them, with significant improve-
ments of over 70% and 13% in NDCG@20 compared to SONG@𝐾
and LambdaLoss@𝐾 , respectively. The unsatisfactory performance
of these surrogate losses can be attributed to their unstable and inef-
fective optimization process, as discussed in Section 3.2.2. Moreover,
LambdaLoss@𝐾 incurs significantly higher computational costs

compared to SL@𝐾 . While sampling strategies could be employed
to accelerate LambdaLoss@𝐾 (i.e., LambdaLoss@𝐾-S in Table 17),
they lead to substantial performance degradation (over 30%).
NDCG@𝐾 performance with varying 𝐾 (RQ2). Table 3 illus-
trates the NDCG@𝐾 performance across different values of 𝐾 . Ex-
perimental results show that SL@𝐾 consistently outperforms the
baseline methods in all NDCG@𝐾 metrics. We also observe that as
𝐾 increases, the magnitude of the improvements decreases, which
aligns with our intuition. Specifically, the Top-𝐾 truncation has a
greater impact when𝐾 is small. As𝐾 increases, NDCG@𝐾 degrades
to the full-ranking metric NDCG. Consequently, the advantage of
optimizing for NDCG@𝐾 diminishes as 𝐾 grows.
Top-𝐾 recommendation consistency (RQ2). Table 4 presents
the performance of NDCG@𝐾 ′ for SL@𝐾 with varying values of
𝐾,𝐾 ′ in {5, 10, 20, 50, 75, 100}. We observe that the best NDCG@𝐾 ′

performance is always achieved when 𝐾 ′ = 𝐾 in SL@𝐾 . This
consistency aligns with our theoretical analysis in Section 3.2.1,
i.e., SL@𝐾 is oriented towards optimizing NDCG@𝐾 rather than
other NDCG@𝐾 ′ when 𝐾 ≠ 𝐾 ′. For instance, SL@20 achieves the
best NDCG@20 performance, but its performance on NDCG@50 is
lower compared to SL@50. Nonetheless, SL@𝐾 always outperforms
SL(@∞), emphasizing the effectiveness of SL@𝐾 in real-world RS.
Noise Robustness (RQ3). In Figure 3, we assess the robustness
of SL@𝐾 to false positive instances. Following Wu et al. [68], we
manually introduce a certain ratio of negative instances as noisy
positive instances during training. As the noise ratio increases,
SL@𝐾 demonstrates greater improvements over SL (up to 24%),
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Figure 3: NDCG@20 performance of SL@𝐾 compared with
SL under varying ratios of imposed false positive instances.

Table 5: LTR results on WEB10K, WEB30K [50], and Istella
[15] datasets (metrics: NDCG@5).

Loss WEB10K WEB30K Istella
ListMLE [70] 0.4145 0.4433 0.5671
ListNet [8] 0.4225 0.4594 0.6290
RankNet [6] 0.4253 0.4426 0.6189
LambdaLoss@5 [29] 0.4320 0.4496 0.5860
NeuralNDCG [49] 0.4338 0.4524 0.5823
SL [69] 0.4310 0.4552 0.6327
SL@5 (Ours) 0.4633 0.4895 0.6412

Imp. % +6.80% +6.55% +1.34%

indicating superior robustness to false positive noise. This finding
is consistent with our analysis in Section 3.2.1.
Application to other IR tasks (RQ4). We adapt SL@𝐾 to three
different IR tasks: LTR (Table 5), SeqRec (Table 6), and LP (Table 7).
Results show that SL@𝐾 consistently outperforms baseline rank-
ing losses (e.g., LambdaLoss@𝐾 [29] and NeuralNDCG [49]) and
classification losses (e.g., BCE [33] and SL [69]) across all tasks,
demonstrating its versatility for general IR applications.

5 Related Work
Recommendation losses. Recommendation losses play a vital
role in recommendation models optimization. The earliest works
treat recommendation as a simple regression or binary classification
problem, utilizing pointwise losses such as MSE [23] and BCE [26].
However, due to neglecting the ranking essence in RS, these point-
wise losses usually result in inferior performance. To address this,
pairwise losses such as BPR [39, 54] have been proposed. BPR aims
to learn a partial order among items and serves as a surrogate for
AUC. Following BPR, Softmax Loss (SL) [69] extends the pairwise
ranking to listwise by introducing the Plackett-Luce models [42, 48]
or contrastive learning principles [13, 46]. SL has been proven to
be an NDCG surrogate and achieves SOTA performance [4, 71].

Recent works have further improved ranking losses from various
approaches. For example, robustness enhancements to SL have been
explored via Distributionally Robust Optimization (DRO) [57], as
seen in AdvInfoNCE [73], BSL [68] and PSL [71]. Other approaches
directly optimize NDCG, including LambdaRank [5], LambdaLoss
[66], SONG [51], and PSL [71]. There are also works focusing on
alternative surrogate approaches for NDCG, including ranking-
based [10], Gumbel-based [18], and neural-based [52] methods.

Table 6: SeqRec results onBeauty andGames [22, 44] datasets.

Loss
Beauty Games

Hit@20 NDCG@20 Hit@20 NDCG@20

BCE [33] 0.1130 0.0484 0.1577 0.0671
SL [69] 0.1578 0.0766 0.2243 0.1024
SL@20 (Ours) 0.1586 0.0780 0.2283 0.1045

Imp. % +0.51% +1.82% +1.78% +2.05%

Table 7: LP results on Cora and Citeseer [56] datasets.

Loss
Cora Citeseer

Hit@20 MRR Hit@20 MRR

BCE [33] 0.3643 0.1482 0.3560 0.1424
SL [69] 0.4668 0.1772 0.4989 0.1942
SL@20 (Ours) 0.4839 0.1812 0.5099 0.1963

Imp. % +3.65% +2.25% +2.20% +1.08%

Despite recent advancements, most ranking losses struggle in
practical Top-𝐾 recommendation, where only the top-ranked items
are retrieved. Losses ignoring Top-𝐾 truncation may face perfor-
mance bottlenecks. To address this, LambdaLoss@𝐾 and SONG@𝐾
optimize NDCG@𝐾 using elegant lambda weights and composi-
tional optimization, respectively, but their performance in RS re-
mains unsatisfactory, as discussed in Section 4.2. Other methods,
such as AATP [3], LLPAUC [59], and OPAUC [58], target metrics
like Precision@𝐾 and Recall@𝐾 , yet their theoretical connections
to NDCG@𝐾 remain unclear. While AATP employs a quantile tech-
nique, it lacks a theoretical foundation and suffers from inefficiency
issues, making it impractical for RS. LLPAUC and OPAUC rely on
complex adversarial training, potentially limiting their effectiveness
and applicability.

6 Conclusion and Future Directions
This work introduces SoftmaxLoss@𝐾 (SL@𝐾 ), a novel recommen-
dation loss tailored for optimizing NDCG@𝐾 . SL@𝐾 employs a
quantile-based technique to address the Top-𝐾 truncation challenge
and derives a smooth approximation to tackle the discontinuity
issue. We establish a tight bound between SL@𝐾 and NDCG@𝐾 ,
demonstrating its theoretical effectiveness. Beyond its theoretical
soundness, SL@𝐾 offers a concise form, introducing only quantile-
based weights atop the conventional Softmax Loss, making it both
easy to implement and computationally efficient.

Looking ahead, a promising direction is to develop incremental
quantile estimation methods to further improve the efficiency of
SL@𝐾 and enable incremental learning in RS. Additionally, since
Top-𝐾 metrics are widely used, further exploring the application
of SL@𝐾 in other domains, such as multimedia retrieval, question
answering, and anomaly detection, is valuable.
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A Appendix
Due to space limitations, the complete appendix is provided online
and can be accessed at https://github.com/Tiny-Snow/IR-Benchmark/
blob/main/paper/SLatK-KDD-2025.pdf.
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