
On the Equivalence of Decoupled Graph Convolution Network
and Label Propagation

Hande Dong
1
, Jiawei Chen

1∗
, Fuli Feng

2
, Xiangnan He

1
, Shuxian Bi

1
, Zhaolin Ding

3
, Peng Cui

4

1
University of Science and Technology of China,

2
National University of Singapore,

3
North Carolina State University,

4
Tsinghua University.

donghd@mail.ustc.edu.cn,cjwustc@ustc.edu.cn,fulifeng93@gmail.com,xiangnanhe@gmail.com,

stanbi@mail.ustc.edu.cn,zding8@ncsu.edu,cuip@tsinghua.edu.cn

ABSTRACT
The original design of Graph Convolution Network (GCN) cou-

ples feature transformation and neighborhood aggregation for node

representation learning. Recently, some work shows that coupling

is inferior to decoupling, which supports deep graph propagation

better and has become the latest paradigm of GCN (e.g., APPNP [16]

and SGCN [32]). Despite effectiveness, the working mechanisms of

the decoupled GCN are not well understood.

In this paper, we explore the decoupled GCN for semi-supervised

node classification from a novel and fundamental perspective —

label propagation. We conduct thorough theoretical analyses, prov-

ing that the decoupled GCN is essentially the same as the two-step

label propagation: first, propagating the known labels along the

graph to generate pseudo-labels for the unlabeled nodes, and sec-

ond, training normal neural network classifiers on the augmented

pseudo-labeled data. More interestingly, we reveal the effectiveness

of decoupled GCN: going beyond the conventional label propaga-

tion, it could automatically assign structure- and model- aware

weights to the pseudo-label data. This explains why the decoupled

GCN is relatively robust to the structure noise and over-smoothing,

but sensitive to the label noise and model initialization. Based on

this insight, we propose a new label propagation method named

Propagation then Training Adaptively (PTA), which overcomes

the flaws of the decoupled GCN with a dynamic and adaptive

weighting strategy. Our PTA is simple yet more effective and ro-

bust than decoupled GCN. We empirically validate our findings

on four benchmark datasets, demonstrating the advantages of our

method. The code is available at https://github.com/DongHande/

PT_propagation_then_training.

CCS CONCEPTS
•Mathematics of computing→Graph algorithms; •Comput-
ing methodologies→ Neural networks.

KEYWORDS
Graph Convolution Network, Graph Neural Networks, Decoupled

Graph Neural Network, Label Propagation

∗ Jiawei Chen is the corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3449927

ACM Reference Format:
HandeDong, Jiawei Chen, Fuli Feng, XiangnanHe, Shuxian Bi, Zhaolin Ding,

and Peng Cui. 2021. On the Equivalence of Decoupled Graph Convolution

Network and Label Propagation. In Proceedings of the Web Conference 2021
(WWW ’21), April 19–23, 2021, Ljubljana, Slovenia. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3442381.3449927

1 INTRODUCTION
Graphs, which reflect relationships between entities, are ubiquitous

in the real world, such as social, citation, molecules and biological

networks. Recent years have witnessed the flourish of deep learning

approaches on graph-based applications, such as node classifica-

tion [5, 18], graph classification [17, 39], link prediction [11, 41],

and community detection [13]. Among various techniques, Graph

Convolutional Network (GCN) has drawn recent attention due to

its effectiveness and flexibility [7, 8, 15, 30, 36, 40, 44].

There are two important operations in a spatial GCN model: 1)

feature transformation, which is inherited from conventional neural

networks to learn node representations from the past features, and

2) neighborhood aggregation (also termed as propagation), which
updates the representation of a node by aggregating the representa-

tions of its neighbors. In the original GCN [15] and many follow-up

models [30, 35, 45], the two operations are coupled, i.e., each graph

convolution layer is consisted of both feature transformation and

neighborhood aggregation. Nevertheless, some recent work find

that such a coupling design is unnecessary and causes many issues

such as training difficulty, hard to leverage graph structure deeply,

and over-smoothing [11, 16, 32]. By separating the two operations,

simpler yet more effective and interpretable models can be achieved,

like the APPNP [16], SGCN [32], DAGNN [19] for node classifica-

tion, and LightGCN [11] for link prediction. We term these models

that separate the neural network from the propagation scheme as

decoupled GCN, which has become the latest paradigm of GCN.

Despite effectiveness, the working mechanisms of the decoupled

GCN are not well understood.

In this work, we strive to analyze the decoupled GCN deeply

and provide insights into how it works for node classification. We

prove in theory (by comparing the gradients) that the training

stage of the decoupled GCN is essentially equivalent to performing

a two-step label propagation. Specifically, the first step propagates

the known labels along the graph to generate pseudo-labels for

the unlabeled nodes, and then the second step trains (non-graph)

neural network predictor on the augmented pseudo-labeled data.

This novel view of label propagation reveals the reasons of the

effectiveness of decoupled GCN:

https://github.com/DongHande/PT_propagation_then_training
https://github.com/DongHande/PT_propagation_then_training
https://doi.org/10.1145/3442381.3449927
https://doi.org/10.1145/3442381.3449927

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui

(3)

(4)

(5)

structure

(1)

(2)

Figure 1: An illustration of the equivalent label propagation
view of the decoupled GCN. The dark node in (1) is a labeled
source node in the training set. The first step propagates the
label of this source node to its 𝐾-hop neighbors, i.e., pseudo-
labeling neighbor nodes, and the second step uses the aug-
mented data to train the neural network predictor. The color
depth represents theweights of the pseudo-labeled data. The
final weights of pseudo-labels in (5) is determined by both
graph structure (1)->(3) and model prediction (2)->(4).

(1) The pseudo-labeled data serves as an augmentation to sup-

plement the input labeled data. In semi-supervised graph learning

settings, the labeled data is usually of small quantity, making neu-

ral network predictors have a large variance and easy to overfit.

As such, the pseudo-labeled data augmentation helps to reduce

overfitting and improve the generalization ability.

(2) Instead of assigning a uniform weight to the pseudo-labeled

data, decoupled GCN dynamically adjusts the weights based on the

graph structure andmodel prediction during training. It follows two

intuitions to adjust the weight of an unlabeled node: first, the node

that is closer to the labeled source node is given a larger weight,

and second, the node that has the pseudo-label different from the

prediction of the neural network is given a smaller weight. The

two intuitions are reasonable and explain why decoupled GCN is

relatively robust to structure noise and over-smoothing.

(3) To predict the label of a node in the inference stage, decou-

pled GCN combines the predictions of the node’s 𝑘-hop neighbors

rather than basing on the node’s own prediction. Given the local

homogeneity assumption of a graph, such an ensemble method

effectively reduces the prediction variance, improving the accuracy

and robustness of model prediction.

Figure 1 illustrates the process. In addition to the advantages re-

vealed by the equivalent label propagation view, we further identify

two limitations of existing decoupled GCN:

(1) High sensitivity to model initialization. Since the weights of

pseudo-labeled data are dynamically adjusted based on model pre-

diction, the initialization of the model exerts a much larger impact

on the model training. An ill initialization would generate incorrect

predictions in the beginning, making the weights of pseudo-labeled

data diverge from the proper values. As a result, the model may

converge to an undesirable state.

(2) Lacking robustness to label noise. The weights of the pseudo-

labeled data generated from a labeled source node are normalized

to be unity. It implies that different labeled nodes are assumed to

have an equal contribution to weigh the pseudo-labeled data. Such

an assumption ignores the quality or importance of labeled data,

which may not be ideally clean and have certain noises in practical

applications.

Our analyses provide deep insights into how the decoupled GCN

works or fails, inspiring us to develop a better method by fostering

strengths and circumventing weaknesses. Specifically, we propose

a new method named Propagation then Training Adaptively (PTA),

which augments the classical label propagation with a carefully

designed adaptive weighting strategy. After generating the pseudo-

labeled data with label propagation, we dynamically control their

weights during modeling training. Firstly, PTA abandons the equal-

contribution assumption on labeled nodes, specifying the impor-

tance of a labeled node based on the consistence between its label

and the predicted labels of its neighbors. Secondly, in the early

stage of training, PTA reduces the impact of model prediction on

the weighting of pseudo-labeled data, since an immature neural

network usually yields unreliable prediction; as the training pro-

ceeds, PTA gradually enlarges the impact to increase the model’s

robustness to noise. Through the two designs, we eliminate the

limitations of decoupled GCN and meanwhile make full use of its

advantages.

We summarize the contributions of this paper as below:

• Conducting thorough theoretical analyses of decoupled GCN,

proving that its training stage is equivalent to performing a

two-step label propagation.

• Analyzing the advantages and limitations of decoupled GCN

from the label propagation perspective.

• Proposing a new label propagation method PTA that inherits

the merits of decoupled GCN and overcomes its limitations

with a carefully designed weighting strategy for pseudo-

labeled data.

• Validating our findings on four datasets of semi-supervised

node classification and demonstrating the superiority of PTA

in multiple aspects of accuracy, robustness, and stability.

2 PRELIMINARIES
In this section, we first formulate the node classification problem

(Section 2.1). We then briefly introduce GCN (Section 2.2) and pro-

vide a summary of existing decoupled GCN (Section 2.3). Finally

the classical label propagation is presented (Section 2.4).

2.1 Problem Formulation
Suppose we have a graph 𝐺 = (V, E), where V is the node set

with |V| = 𝑛 and E is the edge set. In this paper, we consider an

undirected graph, whose adjacency matrix is represented with a

matrix 𝑨 ∈ R𝑛×𝑛 . Let 𝑫 = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, ..., 𝑑𝑛) denote the degree

matrix of 𝑨, where 𝑑𝑖 =
∑
𝑗 ∈V 𝑎𝑖 𝑗 is the degree of the node 𝑖 .

The normalized adjacency matrix is represented as
ˆ𝑨. There are

several normalization strategies, e.g., ˆ𝑨 = 𝑫−1/2𝑨𝑫−1/2
[2], or

ˆ𝑨 = 𝑫−1𝑨 [42], or
ˆ𝑨 = �̃�−1/2�̃��̃�−1/2

, �̃� = 𝑨 + 𝑰 [15] where self-
loop has been added. Also, we have features of the nodes, which are

represented as a matrix 𝑿 ∈ R𝑛×𝑓 . In this paper, we aim to solve

graph-based semi-supervised node classification. Suppose that only

a small set of nodes 𝑖 ∈ V𝑙 ⊆ V have labels ℎ(𝑖) ∈ C from the label

set C = {1, 2, ...,𝐶}. We also write the label ℎ(𝑖) as a one-hot vector

On the Equivalence of Decoupled Graph Convolution Network and Label Propagation WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 1: Notation and Definitions.

Notation Annotation

ˆ𝑨 the normalized adjacency matrix

¯𝑨
∑
𝛽𝑘

ˆ𝑨𝑘 , the combination of
ˆ𝑨𝑘 , 𝑘 = 0, 1, 2 · · ·

𝑿 ∈ R𝑛×𝑓 the feature matrix of the nodes

V𝑙 ,V, C the labeled node set, the universal node set, the label set

ℎ(𝑖) ∈ C the label id of node 𝑖

𝒚𝑖 ∈ R𝐶 the one-hot representation of the label of node 𝑖

𝒀 the observed label matrix

𝒀𝑠𝑜 𝑓 𝑡 the soft label matrix using label propagation

𝒚𝑖 ∈ R𝐶 . Let 𝒀 denotes the observed label matrix, where 𝑖-th row

is either set as 𝒚𝑖 for 𝑖 ∈ V𝑙 or a zero vector otherwise. The goal is

to predict the labels for the unlabeled nodes.

2.2 Graph convolution network (GCN)
GCN performs layer-wise feature transformation and neighborhood

aggregation. Each layer of GCN can be written as:

𝑯 (𝑘+1) = 𝜎
(

ˆ𝑨𝑯 (𝑘)𝑾 (𝑘)
)
, (1)

where 𝑯 (0) = 𝑿 , 𝜎 (.) is an activation function such as ReLU;

𝑯 (𝑘) and𝑾 (𝑘) denote the node representations and transforma-

tion parameters of the 𝑘-th layer. As we can see, each layer con-

sists of two important operations: 1) neighborhood aggregation

𝑷 (𝑘) = ˆ𝑨𝑯 (𝑘) : which refines the representation of a node by aggre-

gating the representations of its neighbors; 2) feature transforma-

tion 𝑯 (𝑘+1) = 𝜎 (𝑷 (𝑘)𝑾 (𝑘)), which is inherited from conventional

neural networks to perform nonlinear feature transformation. By

stacking multiple layers, GCN generates node representations by

integrating both node features and the graph structure.

2.3 Decoupled GCN
In this subsection, we first define a general architecture of decoupled

GCN and show how it subsumes specific decoupled models [11, 16,

19, 32]. We then transform it into a more concise formulation to

facilitate theoretically analyzing it in the next section.

In the original GCN [15] and many follow-up models [30, 35, 45],

neighborhood aggregation and feature transformation are coupled

with each layer. Nevertheless, some recent works find that such

a coupling design is unnecessary and propose to separate these

two operations. These models can be summarized to a general

architecture named decoupled GCN :

�̂� = softmax

(
¯𝑨𝒇𝜃 (𝑿)

)
, (2)

where 𝒇𝜃 (·) is a feature transformation function, which can be

done by neural network.
¯𝑨 =

∑
𝛽𝑘

ˆ𝑨𝑘 is determined by the graph

structure and the propagation strategy, whose element reflects the

proximity of two nodes in the graph. We will next show how this

architecture subsumes existing decoupled methods.

APPNP and DAGNN. APPNP [16] claims several advantages of

separating neural network modeling with the propagation scheme,

formulating the model as:

𝑯 (0) = 𝒇𝜃 (𝑿)

𝑯 (𝑘) = (1 − 𝛼) ˆ𝑨𝑯 (𝑘−1) + 𝛼𝑯 (0) , 𝑘 = 1, 2, ...𝐾 − 1

�̂�𝐴𝑃𝑃𝑁𝑃 = softmax

(
𝑯 (𝐾)

)
.

(3)

APPNP uses Personalized PageRank [24] as the propagation strat-

egy on graph. The model can be subsumed into Equation 2 by

setting
¯𝑨 = (1 − 𝛼)𝐾 ˆ𝑨𝐾 + 𝛼 ∑𝐾−1

𝑘=0
(1 − 𝛼)𝑘 ˆ𝑨𝑘 . The proof is pre-

sented in Appendix A. When 𝐾 →∞, ¯𝑨 = 𝛼 (𝑰 − (1−𝛼) ˆ𝑨)−1
is the

diffusion kernel [43], which has been widely adopted to measure

proximity in the graph. Another recent work DAGNN [19] is similar

to APPNP but uses a different propagation scheme:
¯𝑨 =

∑𝐾
𝑘=0

𝑠𝑘
ˆ𝑨𝑘 ,

where 𝑠𝑘 controls the importance of different layers.

SGCN and LightGCN. The two models are designed by simplify-

ing the original GCN to make it more concise and appropriate for

downstream applications. SGCN and LightGCN are similar but for

different tasks, so here we just present SGCN:

�̂�SGCN = softmax

(
𝑺𝐾𝑿𝚯

)
. (4)

Naturally, it can be subsumed into Equation 2 by setting 𝒇𝜃 (𝑿) =
𝑿𝚯 and

¯𝑨 = 𝑺𝐾 .
In this paper, we would like to define a more concise formulation

of decoupled GCN as follows:

�̂� = ¯𝑨𝒇𝜃 (𝑿), (5)

where softmax function has been integrated into feature trans-

formation function, i.e., 𝒇𝜃 (𝑿) ← softmax(𝒇𝜃 (𝑿)). Although the

predictions are not probabilities, integrating softmax(·) into𝒇𝜃 does
not affect model performance, since softmax(·) is a monotonic func-

tion. Moreover, we analyze such an operation does not affect the

model optimization in Appendix B.

2.4 Label Propagation
Label propagation (LP) [34] is a classic semi-supervised learning

algorithm that propagates the known labels along the graph to

other unlabeled nodes. It can be formulated as follows:

𝒀 (0) = 𝒀

𝒀 (𝑘) = ˆ𝑨𝒀 (𝑘−1) 𝑘 = 1, 2, ..., 𝐾 − 1

𝒚 (𝑘)
𝑖

= 𝒚𝑖 , ∀𝑖 ∈ V𝑙 ,

(6)

where 𝒀 (𝑘) denotes the soft label matrix in iteration 𝑘 , where each

element 𝑦
(𝑘)
𝑖𝑐

reflects how likely that the label of node 𝑖 is pre-

dicted as the label 𝑐 . Similar to decoupled GCN, various propaga-

tion schemes can be adopted for LP, such as Personalized PageRank

which has been adopted by APPNP where 𝒀 (𝑘) = (1−𝛼) ˆ𝑨𝒀 (𝑘−1) +
𝛼𝒀 (0) . Similar to Equation (5), the general formulation of LP can

be summarized as follows:

𝒀𝑠𝑜 𝑓 𝑡 = �̂� = ¯𝑨𝒀 . (7)

3 UNDERSTANDING DECOUPLED GCN
FROM LABEL PROROGATION

In this section, we first define a simple training framework called

Propagation then Training (PT) (Section 3.1). We then conduct a

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui

rigorous mathematical analysis of decoupled GCN to show that

training a decoupled GCN is essentially equivalent to a case of PT

(Section 3.2). Based on this insight, we further discuss the advan-

tages and weaknesses of decoupled GCN (Section 3.3).

3.1 Propagation then Training
Before delving into decoupled GCN, we would like to design a

simple model for node classification based on label propagation,

which consists of two steps: 1) using the LP algorithm to propagate

the known labels along the graph to generate pseudo-labels for the

unlabeled nodes, and 2) training a neural network predictor on the

augmented pseudo-labeled data. This training paradigm is simple

and intuitive, using label propagation for data augmentation and

benefiting model generalization. Formally, the model is optimized

with the following objective function:

𝐿(𝜃) = ℓ (𝒇𝜃 (𝑿), ¯𝑨𝒀), (8)

where ℓ (·) denotes the loss function between the predictions 𝒇𝜃 (𝑿)
and the soft labels 𝒀𝑠𝑜 𝑓 𝑡 = ¯𝑨𝒀 . For the node classification task,

cross-entropy loss is most widely used [22]. Then the objective

function for Equation (8) can be re-written as follows:

𝐿(𝜃) = −
∑

𝑖∈V,𝑘∈C

©«
∑
𝑗 ∈V𝑙

𝑎𝑖 𝑗𝑦 𝑗𝑘
ª®¬ log 𝑓𝑖𝑘

= −
∑

𝑖∈V, 𝑗 ∈V𝑙

𝑎𝑖 𝑗

∑
𝑘∈C

𝑦 𝑗𝑘 log 𝑓𝑖𝑘

=
∑

𝑖∈V, 𝑗 ∈V𝑙

𝑎𝑖 𝑗 CE

(
𝒇𝑖 ,𝒚 𝑗

)
,

(9)

where 𝑎𝑖 𝑗 denotes the (𝑖, 𝑗)-th element of the matrix
¯𝑨, CE(·) de-

notes the cross entropy loss between the predictions 𝒇𝑖 and the

pseudo-labels 𝒚 𝑗 . 𝒇𝑖 represents the result from the function 𝒇𝜃 (𝒙𝑖)
with features 𝒙𝑖 for node 𝑖 and 𝒇𝑖,𝑘 denotes its 𝑘−th element. The

reformulated loss can be interpreted as using node 𝑗 ’s label to train

the node 𝑖 andweighting this pseudo-labeled instance (𝒙𝑖 ,𝒚 𝑗) based
on their graph proximity 𝑎𝑖 𝑗 . It is reasonable as the closer nodes

in the graph usually exhibit more similarity. Larger 𝑎𝑖 𝑗 suggests

larger likelihood that the node 𝑗 is labeled as 𝒚𝑖 . These augmented

data transfer the knowledge of the labeled nodes to their close

neighbors. The weight of instance (𝒙𝑖 ,𝒚 𝑗) is static 𝑎𝑖 𝑗 , i.e., staying
the same value during training, so we name this specific model as

Propagation then Training Statically (PTS).
In most cases, static weighting is unsatisfied (which will be dis-

cussed in next subsection). Thus, we would like to extend the PTS

to a more general framework with flexible weighting strategies.

We name the framework as Propagation then Training (PT), which
optimizes the following objective function:

𝐿𝑃𝑇 = 𝐿(𝜃) =
∑

𝑖∈V, 𝑗 ∈V𝑙

𝑤𝑖 𝑗 CE

(
𝒇𝑖 ,𝒚 𝑗

)
, (10)

where𝑤
define

= 𝑔(𝒇 (𝑋),𝑨)means a general weighting strategy, which

is controlled by the model prediction and propagation scheme with

a specific function 𝑔.

3.2 Connection between Decoupled GCN and
PT

In this subsection, we conduct a mathematical analysis of the gradi-

ents of decoupled GCN, proving that the training stage of decoupled

GCN is essentially equivalent to a special case of PT. In fact, we

have the following lemma:

Lemma 1. Training a decoupled GCN is equivalent to performing

Propagation then Training with dynamic weight𝑤𝑖 𝑗 =
𝑎 𝑗𝑖 𝑓𝑖,ℎ (𝑗)∑

𝑞∈V
𝑎 𝑗𝑞 𝑓𝑞,ℎ (𝑗)

for each pseudo-labeled data (𝒙𝑖 ,𝒚 𝑗), where ℎ(𝑗) means the label ID
of node j, i.e., 𝑦 𝑗,ℎ (𝑗) = 1.

Proof. The lemma can be proved by comparing the gradients

of decoupled GCN and PT. Adopting cross entropy loss, the loss

function of decoupled GCN is:

𝐿𝐷𝐺𝐶𝑁 = ℓ (¯𝑨𝒇𝜃 (𝑿), 𝒀)

= −
∑

𝑗 ∈V𝑙 ,𝑘∈C
𝑦 𝑗𝑘 (log

∑
𝑖∈V

𝑎 𝑗𝑖 𝑓𝑖𝑘) . (11)

The gradients of the objective function w.r.t. 𝜃 can be written as:

∇𝜃𝐿𝐷𝐺𝐶𝑁 = −
∑

𝑗 ∈V𝑙 ,𝑘∈C
𝑦 𝑗𝑘∇𝜃 (log

∑
𝑖∈V

𝑎 𝑗𝑖 𝑓𝑖𝑘)

= −
∑

𝑗 ∈V𝑙 ,𝑘∈C
𝑦 𝑗𝑘

∑
𝑖∈V

𝑎 𝑗𝑖∇𝜃 𝑓𝑖𝑘∑
𝑞∈V

𝑎 𝑗𝑞 𝑓𝑞𝑘
.

(12)

As 𝒚 𝑗 is an one-hot vector, only the ℎ(𝑗)-th element of 𝒚 𝑗 equal to
one. The gradients can be rewritten as follows:

∇𝜃𝐿𝐷𝐺𝐶𝑁 = −
∑
𝑗 ∈V𝑙

𝑦 𝑗,ℎ (𝑗)

∑
𝑖∈V

𝑎 𝑗𝑖∇𝜃 𝑓𝑖,ℎ (𝑗)∑
𝑞∈V

𝑎 𝑗𝑞 𝑓𝑞,ℎ (𝑗)

= −
∑

𝑖∈V, 𝑗 ∈V𝑙

𝑎 𝑗𝑖 𝑓𝑖,ℎ (𝑗)∑
𝑞∈V

𝑎 𝑗𝑞 𝑓𝑞,ℎ (𝑗)
𝑦 𝑗,ℎ (𝑗)

∇𝜃 𝑓𝑖,ℎ (𝑗)
𝑓𝑖,ℎ (𝑗)

=
∑

𝑖∈V, 𝑗 ∈V𝑙

𝑎 𝑗𝑖 𝑓𝑖,ℎ (𝑗)∑
𝑞∈V

𝑎 𝑗𝑞 𝑓𝑞,ℎ (𝑗)
∇𝜃 CE

(
𝒇𝑖 ,𝒚 𝑗

)
.

(13)

Note that the gradients of the PT w.r.t. 𝜃 is:

∇𝜃𝐿𝑃𝑇 =
∑

𝑗 ∈V𝑙 ,𝑖∈V
𝑤𝑖 𝑗∇𝜃 CE

(
𝒇𝑖 ,𝒚 𝑗

)
.

(14)

Comparing Equation (12) with Equation (14), the decoupled GCN

is a special case of LP by setting𝑤𝑖 𝑗 as
𝑎 𝑗𝑖 𝑓𝑖,ℎ (𝑗)∑

𝑞∈V
𝑎 𝑗𝑞 𝑓𝑞,ℎ (𝑗)

. □

3.3 Analyzing Decoupled GCN from PT
Based on above proof, the working mechanism of decoupled GCN

can be well understood. It is equivalent to performing a label prop-

agation to generate pseudo-labels and then optimizing the neural

predictor on the pseudo-labeled data with a weighted loss function.

As we can see from Equation (13), the essence of decoupled GCN is

to construct more training instances with label propagation. Specif-

ically, it propagates the known label of node 𝑗 ’s to other nodes

(such as node 𝑖) and uses the augmented pseudo-label data (𝒙𝑖 ,𝒚 𝑗)
to learn a better classifier. Moreover, these training instances are

On the Equivalence of Decoupled Graph Convolution Network and Label Propagation WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

ID: i combine

Figure 2: APPNP ensembles the predictions of neighbors to
generate final prediction in the inference phase.

weighted by the product of the graph proximity 𝑎 𝑗𝑖 and the model

prediction 𝑓𝑖,ℎ (𝑗) . This finding is highly interesting and helps us to

understand the reasons of the effectiveness of decoupled GCN:

(S1) Label propagation serves as a data augmentation strategy

to supplement the input labeled data. In semi-supervised node clas-

sification task, the labeled data is usually of small quantity, making

it insufficient to train a good neural predictor. The model would

have a large variance and easily sink into over-fitting. As such, the

pseudo-labeled data augmentation helps to reduce overfitting and

improves model performance.

(S2) Instead of assigning a static weight to the pseudo-labeled

data, decoupled GCN dynamically adjusts the weight. On the one

hand, the node that is closer to the labeled source node is given a

larger weight 𝑎 𝑗𝑖 . As analyzed in Section 4.1, this setting matches

our intuition, as closer nodes usually exhibit more similarity in

their properties or labels. On the other hand, if a node has a pseudo-

label highly different from the prediction, the pseudo-labeled data

would obtain smaller weight. This setting makes the model more

robust to the structure noise, which is common in real-world graph

topology. Real-world graphs may not be ideally clean and have

certain noises in edges. Two connected nodes sometimes exhibit

different properties and belong to different classes. For example, in

a social network, connected friends may belong to different schools;

in a citation network, a paper may cite the work from other fields.

The pseudo-labels propagated along such noisy inter-class edges are

unreasonable and may hurt the model performance. In decoupled

GCN, this bad effect could be mitigated, as the contribution of

these unreliable pseudo-labeled data will be reduced. Moreover, this

setting endows the model the potential to mitigate over-smoothing.

The noisy signal from distant labeled nodes would be attenuated

heavily by the weights.

(S3) To predict the label of a node in the inference stage, as

shown in Figure 2, decoupled GCN combines the predictions of the

node’s 𝐾-hop neighbors rather than basing only on the node’s own

prediction. For a target node 𝑖 , decoupled GCN finds its 𝐾-order

neighbors and combines their predictions with the trained neural

network. Such an ensemble mechanism further boosts model’s

performance by reducing the prediction variance.

However, some weaknesses of the decoupled GCN are revealed.

(W1) Since the weights of pseudo-labeled data are dynamically

adjusted based on model prediction, the initialization of the model

exerts a much larger impact on the model training. An ill initializa-

tion would generate incorrect predictions in the beginning, making

the weights of pseudo-labeled data diverge from the proper values.

It further skews the contribution of pseudo-labeled data and the

model may converge to undesirable states.

(W2) The weights of the pseudo-labeled data generated from a

labeled source node are normalized to be unity, i.e.,
∑
𝑖∈V 𝑤𝑖 𝑗 = 1.

It implies that different labeled nodes are assumed to have an equal

contribution to weigh the pseudo-labeled data. Such an assumption

ignores the quality or importance of labeled data, which may not be

ideally clean and have certain noises in practical applications. Some

labels are carefully labeled by expert, whereas some labels may be

contaminated by accidents or envirnmental noises. Treating them

equally is not reasonble. As such, the model is vulnerable to label

noises which will deteriorate the model performance.

4 PROPOSED METHOD: PROPAGATION
THEN TRAINING ADAPATIVELY

Given the analysis of decoupled GCN, in this section, we aim to

develop a better method that can foster its merits and overcome

its weaknesses. We name the proposed method as Propagation then
Training Adaptively (PTA), which improves the LP view of decou-

pled GCN with an adaptive weighting strategy. Focusing on the

two weaknesses of decoupled GCN, PTA makes two revisions:

(1) To make the model more robust to label noise, we remove the

normalization of weights of decoupled GCN to let different labeled

data exert varying impact on model training. The weight without

normalization can be written as:

𝑤𝑖 𝑗 = 𝑎 𝑗𝑖 𝑓𝑖,ℎ (𝑗) . (15)

The accumulated weight of the pseudo-labeled data generated from

a specific labeled source node can be written as:

𝑆 𝑗 =
∑
𝑖∈𝑉

𝑎 𝑗𝑖 𝑓𝑖,ℎ (𝑗) . (16)

which is dynamically adjusted according to 𝑓𝑖,ℎ (𝑗) . Specifically, the
importance of each labeled data 𝑆 𝑗 is determined by the consistence

between its label and the predicted labels of its neighbors (or multi-

hop neighbors). When the labels of its neighbors are predicted to be

different from ℎ(𝑗) (i.e., 𝑓𝑖,ℎ (𝑗) is small), it implies the labeled data

may be contaminated by noises. Naturally, this design reduces the

contribution of this unreliable labeled data and makes the model

more robust to label noise. Another advantage of removing normal-

ization is making the model more concise and easier to implement,

as the computationally expensive summation over the neighbors

(or multi-hop neighbors) is avoided. Nevertheless, this design may

increase model’s sensitivity to the model initialization which also

determines the impact of the labeled data. We address this issue in

the next design.

(2) The sensitivity to model initialization is caused by the weights

𝑓𝑖,𝑘 (𝑗) . However, blindly removing 𝑓𝑖,𝑘 (𝑗) is problematic as it would

hurt model robustness to label noise and structure noise. To deal

with this problem, we develop an adaptive weighting strategy as

follows:

𝑤𝑖 𝑗 = 𝑎 𝑗𝑖 𝑓
𝛾

𝑖,ℎ (𝑗) , 𝛾 = log(1 + 𝑒/𝜖), (17)

where 𝛾 is define to control the impact of 𝑓𝑖,ℎ (𝑗) on the weighting

of the pseudo-labeled data, which will evolve with the training

process. 𝑒 denotes the current training epoch and 𝜖 is a temperature

hyper-parameter controlling the sensitivity of 𝛾 to 𝑒 . Our design is

simple but rather effective. In the early stage of training, when the

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui

immature neural network generates relatively unreliable prediction,

PTA reduces the impact of model prediction on weighting pseudo-

labeled data. This setting makes the model yield stable results. With

the training proceeding, as the neural predictor gradually gives

more accurate results, PTA enlarges its impact to make the model

robust to both label noise and structure noise.

Through the two designs, we eliminate the limitations of decou-

pled GCN and meanwhile make full use of its advatanges. Overall,

PTA optimizes the following objective function:

𝐿𝑃𝑇𝐴 (𝜃) =
∑

𝑖∈𝑉 ,𝑗 ∈𝑉𝑙
𝑤𝑖 𝑗 CE

(
𝒇𝑖 ,𝒚 𝑗

)
, 𝑤𝑖 𝑗 = 𝑎 𝑗𝑖 𝑓

𝛾

𝑖,ℎ (𝑗) . (18)

We also give a concise matrix-wise formula as follows:

𝐿𝑃𝑇𝐴 (𝜃) = − 𝑆𝑈𝑀
(
𝒀𝑠𝑜 𝑓 𝑡 ⊗ 𝒇 (𝑿)𝛾 ⊗ 𝑙𝑜𝑔 (𝒇𝜃 (𝑿))

)
, (19)

where ⊗ represents the element-wise product, 𝑆𝑈𝑀 (·) represents
the sum of all elements in matrix, 𝒀𝑠𝑜 𝑓 𝑡 represents the soft label
generated using label propagation, 𝒇 (𝑿) does not propagate gra-
dients backward, and gradients propagate only from 𝑙𝑜𝑔 (𝒇𝜃 (𝑿)).
The proof for Equation 19 can be seen in Appendix C. The complete

framework of PTA is in Appendix D.

Compared the concise form of PTA with vanilla decoupled GCN

(e.g., APPNP), PTA also has an advantage of efficient computa-

tion. In decoupled GCN, both feature transformation and neighbor

aggregation need to be conducted in each epoch. Moreover, the

updating of the transformation function 𝒇𝜃 (𝑿) requires back prop-

agation along both operations. The complexity of decoupled GCN

is T (𝒇 (𝑿)) + T (¯𝑨𝑯), where T (𝒇 (𝑿)) and T (¯𝑨𝑯) denote the

complexity of the two operations, respectively. In our PTA, the two

operations have been thoroughly separated, i.e., graph propagation

can be pre-processed and used for all epochs while each training

epoch only need to consider feature transformation. The overall

training algorithm of our PTA is presented in Algorithm 1. As we

can see, we just need to run the label propagation to generate soft-

label matrix 𝒀𝑠𝑜 𝑓 𝑡 , which can be considered as data pre-processing.

We then train the neural predictor 𝒇𝜃 (𝑿) with soft label 𝒀𝑠𝑜 𝑓 𝑡 and
additional weighting 𝒇 (𝑿)𝛾 , avoiding the expensive forward and

back propagation of the neighbor aggregation in each epoch. The

complexity of PTA is reduced from T (𝒇 (𝑿)) +T (¯𝑨𝑯) to T (𝒇 (𝑿)).
It is worthmentioning that the neighborhood aggregationmecha-

nism of GCN is non-trivial to implement in parallel [26, 29], making

it the efficiency bottleneck on large graphs. In contrast, the label

propagation used in PTA is well studied and much easier to imple-

ment on large graphs. As such, our PTA eases the implementation

of graph learning and has great learning potentials to be deployed

in large-scale industrial applications.

5 EXPERIMENTS
We conduct experiments on four real-world benchmark datasets to

evaluate the performance of existing decoupled methods and our

proposed PTA. We aim to answer the following research questions:

RQ1: Do three advantages of decoupled GCN that we analyzed

from LP perspective indeed boost its performance?

RQ2: Is decoupled GCN sensitive to the initialization and the label

noise? How does PTA overcome these problems?

Algorithm 1 Propagation then Training Adaptively.

Input: Graph 𝐺 = (V, E); Features 𝑿 ; Observed labels 𝒀 ;
Output: Neural network predictor 𝒚 = 𝒇𝜃 (𝒙) .
Generate soft label matrix �̂�𝑠𝑜 𝑓 𝑡 with label propagation:

for 𝑒 = 1 to 𝐸𝑝𝑜𝑐ℎ𝑚𝑎𝑥 do
Calculate the adaptive factor: 𝛾 = 𝑙𝑜𝑔(1 + 𝑒/𝜀)
Calculate loss: 𝐿 = − 𝑆𝑈𝑀 (𝒀𝑠𝑜 𝑓 𝑡 ⊗ 𝒇 (𝑿)𝛾 ⊗ 𝑙𝑜𝑔(𝒇𝜃 (𝑿)))
Optimize 𝜃 by minimizing 𝐿 + 𝜆𝐿𝑟𝑒𝑔 with gradient descent

end for
return Neural network predictor 𝒚 = 𝒇𝜃 (𝒙)

Table 2: Statistics of the datasets.

Dataset Nodes Edges Features Classes

CITESEER 2,110 3,668 3,703 6

CORA_ML 2,810 7,981 2,879 7

PUBMED 19,717 44,324 500 3

MS_ACADEMIC 18,333 81,894 6,805 15

RQ3: How does the proposed PTA perform as compared with

state-of-the-art GCN methods?

RQ4: Is PTA more efficient than decoupled GCN?

5.1 Experimental Setup
We take APPNP as the representative model of decoupled GCN for

experiments, since APPNP performs similarly with DAGNN while

they are both superior over SGCN. To reduce the experiment work-

load and keep the comparison fair, we closely follow the settings

of the APPNP work [16], including the experimental datasets and

various implementation details.

Datasets. Following the APPNPwork [16], we also use four node-
classification benchmark datasets for evaluation, including CITE-

SEER [27], CORA_ML [21], PUBMED [23] and MICROSOFT ACA-

DEMIC [28]. CITESEER, CORA_ML, and PUBMED are citation net-

works, where each node represents a paper and an edge indicates a

citation relationship. MICROSOFT ACADEMIC is a co-authorship

network, where nodes and edges represent authors and co-author

relationship, respectively. The dataset statistics is summarized in

Table 2. Also, we follow [16] and split each dataset into training

set, early-stopping set, and test set, where each class has 20 labeled

nodes in the training set.

Compared methods. The main competing method is APPNP,

which has shown to outperform several graph-based models, includ-

ing Network of GCNs (N-GCN) [1], graph attention network (GAT)

[30], jumping knowledge networks with concatenation (JK) [37],

etc. As the comparison is done on the same datasets under the same

evaluation protocol, we do not further compare with these methods.

In addition to APPNP, we further compare with two relevant and

competitive decoupled methods: DAGNN [19] and SGCN [32], and

two baseline models MLP, GCN [15]. Further two variants of PTA

are tested:

• PTS: propagation then training statically, where we give

a graph-based static weighting 𝑎 𝑗𝑖 to pseudo-labeled data.

PTS can be considered as simple version of APPNP and PTA,

On the Equivalence of Decoupled Graph Convolution Network and Label Propagation WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 3: Characteristics of APPNP and its variants.

Method

Pseudo-

labels?

Graph-based

weighting?

Model-based

weighting?

Ensemble?

MLP × × × ×
APPNP-noa-nof ✓ × × ✓

PTS ✓ ✓ × ✓
APPNP-noe ✓ ✓ ✓ ×
APPNP ✓ ✓ ✓ ✓

wheremodel-basedweighting is removed.More details about

PTS can refer to section 3.1.

• PTD: propagation then training dynamically. PTD can be

considered as an intermediate model between APPNP and

PTA, where each pseudo-labeled data is weighed by𝑎 𝑗𝑖 𝑓𝑖,ℎ (𝑗) .
Comparing with APPNP, weighting normalization has been

removed; Comparing with PTA, PTD does not use the adap-

tive factor.

Implementation details. In our experiments, we take APPNP as

the representative model of decoupled GCN for experiments. For

fair comparison, all the configures of PTD, PTS, PTA are the same

as APPNP including layers, hidden units, regularization, early stop-

ping, initialization and optimizer. Also, we use the same propagation

scheme as APPNP. That is, we use PageRank to propagate labels

with the same hyper-parameters. The additional parameter 𝜀 in

Equation (17) is set as 100 across all datasets. We run each experi-

ment 100 times on multiple random splits and initialization. More

details of the setting of our PTA are presented in Appendix E. For

the compared methods, we refer to their results or settings that are

reported in their papers. We will share our source code when the

paper gets published.

5.2 Empirical Analyses of APPNP (RQ1)
In this subsection, we take APPNP as a representative method to

answer the RQ1. As discussed in section 3.3, we attribute the ef-

fectiveness of decoupled GCN to three different aspects: 1) data

augmentation through label propagation, 2) dynamic weighting,

and 3) Ensembles multiply predictors. To show the impact of these

aspects, we conduct ablation studies and compare APPNP with

its four variants: 1) MLP, where both pseudo-labels and ensem-

ble are removed; 2) APPNP-noa-nof, where weighting of pseudo-

labels (𝑤𝑖 𝑗) is removed; 3) PTS, where dynamic weighting 𝑓𝑖,ℎ (𝑗)
is removed. 4) APPNP-noe, where the ensemble is removed; The

characteristics of these compared methods are presented in Table 3.

Effect of label propagation. From Table 4, we can find all the

methods with label propagation outperform MLP by a large margin.

Specifically, the average accuracy improvement of APPNP (or even

if its non-ensemble version APPNP-noe) over MLP on four datasets

is 7.40% (or 5.45%), which are rather significant. Moreover, to our

surprise, the simple model PTS achieves impressive performance.

Although its performance is relatively inferior to APPNP, the values

are pretty close. This result validates the major reason of the effec-

tiveness of APPNP is data augmentation with label propagation.

Effect of weighting. On the one hand, by comparing PTS with

APPNP-noa-nof, we can conclude that weighing the pseudo-labeled

data with graph proximity 𝑎 𝑗𝑖 is highly useful. On the other hand,

Table 4: Performance of APPNP and its variants.

Method CITESEER CORA_ML PUBMED MS_ACA

MLP 63.98 ± 0.44 68.42 ± 0.34 69.47 ± 0.47 89.69 ± 0.10

APPNP-noa-nof 72.71 ± 0.55 78.51 ± 0.46 77.18 ± 0.53 90.18 ± 0.23

PTS 75.58 ± 0.25 85.02 ± 0.24 79.67 ± 0.28 92.76 ± 0.10

APPNP-noe 70.98 ± 0.34 77.74 ± 0.27 74.80 ± 0.43 89.85 ± 0.09

APPNP 75.48 ± 0.29 85.07 ± 0.25 79.61 ± 0.33 93.31 ± 0.08

we observe APPNP relatively performs better than PTS as it intro-

duces an additional dynamic weighting 𝑓𝑖,ℎ (𝑗) , which can mitigate

adverse effects of structure noise.

To gain more insight in the effect of dynamic weighting, we

conduct an additional experiment to explore the robustness of these

methods to the structure noise. Here we first define the structure
noise rates as the percent of the “noisy” edges in the graph, where

the “noisy” edges denote the edges whose connected nodes belong

to different classes. We randomly transfer some good (noisy) edges

into noisy (good) edges to generate simulated graphs with different

structure noise rates. The performance of APPNP, PTS, GCN, MLP

are presented in Figure 3. For APPNP and PTS, here we choose

2-layer graph propagation for fair comparison with GCN. The black

dash line denotes the structure noise rates of the original graph.

As we can see from Figure 3, when the graph is relative clean

(less than 5%), all the graph-based methods perform pretty well. But

it is impractical due to the collected graph are always not so clean.

As the structure noise increases, the performance of original GCN

drops quickly, which vividly validate the superiority of decoupled

GCN over vanilla GCN. Also, we observe the margin achieved by

APPNP over PTS become larger with the noise increasing. This

experimental result is consistent with our analysis presented in

section 3.3 that model-based dynamic weighting indeed improve

model’s robustness to structure noise.

More interestingly, when the graph structure noise is large

enough (over 50% in the four data-sets), all GNN-based models

(GCN, APPNP, PTS) perform even worse than MLP. This phenome-

non validates the basic assumption of GCN-based methods is local
homogeneity [38], i.e., connected nodes in the graph tend to share

similar properties and same labels. When the assumption is not

hold in the graph, this kind of methods may not be applicable.

Effect of ensemble. We also observe that APPNP consistently

outperforms APPNP-noe. This result validates that ensemble is

anther important factor of the effectiveness of decoupled GCN.

5.3 Study of Robustness (RQ2)
In this subsection, we explore how PTA compares with APPNP

in terms of robustness to the initialization and label noise. The

robustness to structure noise can refer to figure 6 in Appendix F.

Robustness to initialization. Figure 4 shows the accuracy dis-
tribution of each model is. The smaller boxes and the less outlines

suggest the model is more robust to the initialization. From the

Figure 4 and Table 4, We observe that: 1) APPNP, which introduces

the dynamic weighting on pseudo-labeled data, is more sensitive

to the initialization than PTS. 2) PTA, which adopts the adaptive

weighting strategy, is more stable than APPNP and PTD. 3) PTD,

where the normalization of weights is removed, is highly unstable.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui

Figure 3: The model robustness to graph structure noise of
different models. The black dashed line indicates the struc-
ture noise rate of the original graph.

Figure 4: Accuracy distributions of the compared models.

These results validate the necessary and effectiveness of introduc-

ing the adaptive weighting strategy. It can reduce the impact of

model initialization and foster model’s robustness to the noises.

Robustness to the label noise.We also conduct an interesting

simulated experiments to explore the robustness of the models to

the label noise. That is, we randomly transfer a certain number of

instances in each class and change their labels to others (“noisy”

labels). We then run different methods on these simulated graph

Figure 5: The model robustness to the label noise.

with different ratios of “noisy” labels. the result is presented in

Figure 5. We observe that: 1) Even there is no label noise, PTA still

outperforms others. This result suggests that the equal-contribution

assumption is invalid. Different labeled data usually has different

quality and importance on learning a neural network predictor.

2) The margins achieved by PTA over APPNP and PTA become

larger with the noise increasing. This result is consistent with our

analysis presented in section 4 that removing normalization of

weights indeed boosts model’s robustness to the label noise.

5.4 Performance Comparison with
State-of-the-Arts (RQ3)

Table 5 presents the performance of compared methods in terms of

accuracy. The boldface font denotes the winner in that column. For

the important baseline APPNP, we present both the results that are

reported in the original paper with mark ’#’, and our reproduced

results. They may have slight difference due to random initializa-

tion and random data splits. To ensure the statistical robustness of

our experimental setup, we calculate confidence intervals via boot-

strapping and report the p-values of a paired t-test between PTA

and APPNP. From the table, we have the following observations:

Overall, PTA outperforms all compared methods on all datasets.

This result validates our proposed PTA benefits to train a better

neural network predictor. Specifically, comparing with APPNP, the

best baseline in general, the improvements of PTA over APPNP is

statistically significant with paired t-test at 𝑝 < 0.05 on all datasets.

5.5 Efficiency Comparison (RQ4)
In this section, we empirically compare the efficiency of PTA and

APPNP. Table 6 shows the running time of PTA and APPNP in

each epoch, while Table 7 shows the total time cost on training the

On the Equivalence of Decoupled Graph Convolution Network and Label Propagation WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 5: Accuracy of our PTA comparing with state-of-the-
art methods. The 𝑝-value in the last row is obtained via a
paired 𝑡-test between PTA and APPNP.

Method CITESEER CORA_ML PUBMED MS_ACA

MLP 63.98 ± 0.44 68.42 ± 0.34 69.47 ± 0.47 89.69 ± 0.10

GCN 73.62 ± 0.39 82.70 ± 0.39 76.84 ± 0.44 91.39 ± 0.10

SGCN 75.57 ± 0.28 75.97 ± 0.72 71.24 ± 0.86 91.03 ± 0.16

APPNP # 75.73 ± 0.30 85.09 ± 0.25 79.73 ± 0.31 93.27 ± 0.08

DAGNN 74.53 ± 0.38 85.75 ± 0.23 79.59 ± 0.37 92.29 ± 0.07

APPNP 75.48 ± 0.29 85.07 ± 0.25 79.61 ± 0.33 93.31 ± 0.08

PTA 75.98 ± 0.24 85.90 ± 0.21 79.89 ± 0.31 93.64 ± 0.08
p-value 5.56 × 10

−4
1.81 × 10

−9
1.09 × 10

−2
1.57 × 10

−8

Table 6: The training time per epoch of PTA and APPNP.

Method CITESEER CORA_ML PUBMED MS_ACA

APPNP 34.73ms 28.60ms 34.98ms 30.51ms

PTA 3.33𝒎𝒔 3.35𝒎𝒔 3.27𝒎𝒔 3.33𝒎𝒔

Table 7: The total training time of PTA and APPNP.

Method CITESEER CORA_ML PUBMED MS_ACA

APPNP 52.75s 75.30s 49.39s 134.23s

PTA 10.14𝑠 11.95𝑠 10.59𝑠 17.12s

PTA(F) 1.19𝒔 1.25𝒔 1.40𝒔 3.92𝒔

Table 8: The accuracy of PTA(F).

Method CITESEER CORA_ML PUBMED MS_ACA

APPNP 75.48 ± 0.29 85.07 ± 0.25 79.61 ± 0.33 93.31 ± 0.08

PTA(F) 75.51 ± 0.24 85.73 ± 0.22 79.45 ± 0.40 93.62 ± 0.08

PTA 75.98 ± 0.24 85.90 ± 0.21 79.89 ± 0.31 93.64 ± 0.08

two models. Note that estimating performance of PTA on the early-

stopping set is time-consuming, we further design a fast mode of

PTA (PTA(F)), which directly use 𝑓𝜃 (𝑥) instead of ensemble results

for early-stopping estimation. The performance of PTA(F) compar-

ing with PTA and APPNP is presented in Table 8. From the tables,

We can conclude that PTA is much faster than APPNP: on average,

about 9.7 times acceleration per epoch and 5.7 times acceleration

for totally running time. When we use fast mode (PTA(F)), although

its performance would decay slightly (-0.28% on average), it still

outperforms APPNP and achieves impressive speed-up (about 43

times over APPNP and 7.5 times over PTA).

6 RELATEDWORK
Inspired by the success of the convolutional neural networks (CNN)
in computer vision [10], CNNhas been generalized to graph-structured

data with a so-called graph convolutional neural network (GCN).

There are two lines to understand GCN: From a spectral perspec-

tive, the convolutions on the graph can be understood as a filter

to remove the noise from graph signals. The first work on this

line was presented by Bruna et al. [2]. Defferrard et al. [6] and
Kipf et al. [15] further propose to simplify graph convolutions with

Chebyshev polynomial to avoid expensive computation of graph

Laplacian eigenvectors. Afterwards, some researchers put forward

their understanding of GCN in spatial domain [36]. From the spa-

tial perspective, the convolution in GCN can be analogized with

“patch operator” which refines the representation of each node by

combining the information from its neighbors. This simple and

intuitive thinking inspires much work on spatial GCN [4, 9, 30, 36],

which exhibits attractive efficiency and flexibility, and gradually

becomes the mainstream. For example, Velickovic et al.[30] lever-
aged attention strategy in GCN, which specifies different weights

to different neighbors; Hamilton [9] et al.[36] proposed to sample a

part of neighbors for model training to make the GCN scale up to

large-scale graph; Xu et al.analyzed the expressive power of GCN

to capture different graph structures, and further proposed Graph
Isomorphism Network; Li et al.[18] validate the GCN is a special

form of Laplacian smoothing and show exsting methods may suffer

from over-smoothing issue; Chen et al.[4] further explored over-

smoothing issue of GCN and propose two strategies MADGap and

AdaEdge to address it. Here we just list most related work. There are

many other graph neural models. We refer the readers to excellent

surveys and monographs for more details [3, 33].

Note that feature transformation and neighborhood aggregation
are two important operations in a spatial GCN model. In the orig-

inal GCN [15] and many follow-up models [20, 25, 31], the two

operations are coupled, where each operation is companied with

the other in a graph convolution layer. In fact, some recent works

find such a coupling design is unnecessary and even troublesome.

Klicpera et al. [16] and Liu et al. [19] claim that decoupling the two

operations permits more deep propagation without leading to over-

smoothing; Wu et al. [32] and He et al. [11] empirically validate

the simplified decoupled GCN outperforms the vanilla one in terms

of both accuracy and efficiency. Despite decoupled GCN attracts

increasing attention and has become the last paradigm of GCN, to

our best knowledge, none of work has provided deep analysis of

working mechanisms, advantages and limitations about it.

Lastly, both label propagation (LP) [34] and GCN follow the in-

formation propagation scheme, which implies they have the same

internal foundation. However, their relations have not been investi-

gated. The most relevant work that jointly considers both methods

is [12], which trains a base predictor on the labeled data and then

corrects it by information propagation on the graph. The angle of

this work differs from ours significantly. In this work, we prove

that decoupled GCN is identical to the Propagation then Training,
which to our knowledge is the first work that reveals the essential

relation between LP and GCN.

7 CONCLUSION
In this work, we conduct thorough theoretical analyses on decou-

pled GCN and prove its training stage is essentially equivalent to

performing Propagation then Training. This novel view of label prop-

agation reveals the reasons of the effectiveness of decoupled GCN:

1) data augmentation through label propagation; 2) structure- and

model- aware weighting for the pseudo-labeled data; and 3) com-

bining the predictions of neighbors. In addition to the advantages,

we also identify two limitations of decoupled GCN — sensitive to

model initialization and to label noise. Based on these insight, we

further propose a new method Propagation then Training adap-
tive (PTA), which posters the advantages of decoupled GCN and

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui

overcomes its weaknesses by introducing an adaptive weighting

strategy. Empirical studies on four node classification datasets vali-

date the superiority of the proposed PTA over decoupled GCNs in

all robustness, accuracy, and efficiency.

We believe the insights brought by the label propagation view

are inspiration for future research and application of GCN. Here

we point out three directions. First, our analyses focus on the semi-

supervised node-classification setting. How to extend to other tasks

like link prediction and graph classification is interesting and valu-

able to explore. Second, this work provides a new view of GCN. It

will be useful to explore existing methods from this perspective

and analyze their pros and cons, which are instructive to develop

better models. Third, our proposed PTA uses a relatively simple

weighting strategies. More sophisticated weighting strategy can

be explored, such as learning from side information, graph global

topology, validation data, or employing adversarial learning for

better robustness.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation

of China (U19A2079, U1936210) and the National Key Research and

Development Program of China (2020AAA0106000).

REFERENCES
[1] Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. 2019. N-GCN:

Multi-scale Graph Convolution for Semi-supervised Node Classification. In the
Conference on Uncertainty in Artificial Intelligence, UAI, 2019.

[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spec-

tral Networks and Locally Connected Networks on Graphs. In the International
Conference on Learning Representations, ICLR, 2014.

[3] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-

prehensive survey of graph embedding: Problems, techniques, and applications.

IEEE Transactions on Knowledge and Data Engineering, TKDE (2018).

[4] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and Relieving the Over-smoothing Problem for Graph Neural Networks from

the Topological View. AAAI Conference on Artificial Intelligence, AAAI (2020).
[5] Weijian Chen, Yulong Gu, Zhaochun Ren, Xiangnan He, Hongtao Xie, Tong Guo,

Dawei Yin, and Yongdong Zhang. 2019. Semi-supervised User Profiling with

Heterogeneous Graph Attention Networks. In the International Joint Conference
on Artificial Intelligence, IJCAI 2019.

[6] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-

lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In

Advances in Neural Information Processing Systems, NIPS, 2016.
[7] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Benjamin Chamberlain, Michael

Bronstein, and Federico Monti. 2020. SIGN: Scalable Inception Graph Neural

Networks. In International Conference on Machine Learning, ICML 2020.
[8] Vikas K. Garg, Stefanie Jegelka, and Tommi S. Jaakkola. 2020. Generalization and

Representational Limits of Graph Neural Networks. In International Conference
on Machine Learning, ICML, 2020.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation

Learning on Large Graphs. In Advances in Neural Information Processing Systems,
NIPS, 2017.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In Conference on Computer Vision and Pattern
Recognition,CVPR, 2016.

[11] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng

Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network

for Recommendation. In International ACM SIGIR conference on research and
development in Information Retrieval, SIGIR 2020.

[12] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson. 2021.

Combining Label Propagation and Simple Models Out-performs Graph Neural

Networks. In the International Conference on Learning Representations, ICLR 2021.
[13] Di Jin, Ziyang Liu, Weihao Li, Dongxiao He, and Weixiong Zhang. 2019. Graph

convolutional networks meet markov random fields: Semi-supervised community

detection in attribute networks. In the AAAI Conference on Artificial Intelligence,
AAAI, 2019.

[14] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In International Conference on Learning Representations, ICLR,2015.

[15] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In International Conference on Learning Repre-
sentations, ICLR, 2017.

[16] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-

dict then Propagate: Graph Neural Networks meet Personalized PageRank. In

International Conference on Learning Representations, ICLR, 2019.
[17] Boris Knyazev, Graham W. Taylor, and Mohamed R. Amer. 2019. Understanding

Attention and Generalization in Graph Neural Networks. In Conference on Neural
Information Processing Systems, NIPS, 2019.

[18] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper Insights Into Graph

Convolutional Networks for Semi-Supervised Learning. In AAAI Conference on
Artificial Intelligence, AAAI, 2018.

[19] Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards Deeper Graph Neural

Networks. In The ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, KDD, 2020.

[20] JianxinMa, Peng Cui, KunKuang, XinWang, andWenwuZhu. 2019. Disentangled

Graph Convolutional Networks. International Conference on Machine Learning,
ICML (2019).

[21] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.

2000. Automating the construction of internet portals with machine learning.

Information Retrieval (2000).
[22] Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.

[23] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. 2012.

Query-driven active surveying for collective classification. In International Work-
shop on Mining and Learning with Graphs, 2012.

[24] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report. Stanford
InfoLab.

[25] Aravind Sankar, Junting Wang, Adit Krishnan, and Hari Sundaram. 2020. Be-

yond Localized Graph Neural Networks: An Attributed Motif Regularization

Framework. In the International Conference on Data Mining, ICDM 2020.
[26] Simone Scardapane, Indro Spinelli, and Paolo Di Lorenzo. 2021. Distributed

Training of Graph Convolutional Networks. IEEE Trans. Signal Inf. Process. over
Networks (2021).

[27] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine
(2008).

[28] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. In Relational
Representation Learning Workshop, R2L, 2018.

[29] Chao Tian, Lingxiao Ma, Zhi Yang, and Yafei Dai. 2020. PCGCN: Partition-

Centric Processing for Accelerating Graph Convolutional Network. In 2020 IEEE
International Parallel and Distributed Processing Symposium IPDPS, 2020.

[30] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations, ICLR, 2018.

[31] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural Graph Collaborative Filtering. In International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR, 2019.

[32] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and

Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In

International Conference on Machine Learning, ICML, 2019.
[33] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems (2020).

[34] Zhu Xiaojin and Ghahramani Zoubin. 2002. Learning from labeled and unlabeled

data with label propagation. Technical Report, Carnegie Mellon University (2002).

[35] Yiqing Xie, Sha Li, Carl Yang, Raymond Chi-Wing Wong, and Jiawei Han. 2020.

WhenDoGNNsWork: Understanding and Improving NeighborhoodAggregation.

In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020.

[36] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks?. In International Conference on Learning Representa-
tions, ICLR, 2019.

[37] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs

with Jumping Knowledge Networks. In International Conference on Machine
Learning, ICML, 2018.

[38] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting

Semi-Supervised Learning with Graph Embeddings. In International Conference
on Machine Learning, ICML, 2016.

[39] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph convolutional networks

for text classification. In the AAAI Conference on Artificial Intelligence, AAAI,
2019.

[40] Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware Graph Neural

Networks. In the International Conference on Machine Learning, ICML 2019.
[41] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural

Networks. In Neural Information Processing Systems, NeurIPS, 2018.

On the Equivalence of Decoupled Graph Convolution Network and Label Propagation WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

[42] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An End-

to-End Deep Learning Architecture for Graph Classification. In Conference on
Artificial Intelligence, AAAI, 2018.

[43] Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard

Schölkopf. 2004. Learning with local and global consistency. In Advances in
neural information processing systems, NIPS, 2004.

[44] Hongmin Zhu, Fuli Feng, Xiangnan He, XiangWang, Yan Li, Kai Zheng, and Yong-

dong Zhang. 2020. Bilinear Graph Neural Network with Neighbor Interactions.

In the International Joint Conference on Artificial Intelligence, IJCAI 2020.
[45] Chenyi Zhuang and Qiang Ma. 2018. Dual Graph Convolutional Networks for

Graph-Based Semi-Supervised Classification. In Proceedings of the 2018 World
Wide Web Conference on World Wide Web, WWW 2018.

A APPNP TO THE ARCHITECTURE OF
DECOUPLED GCN

The general architecture of decoupled GCN can be written:

�̂� = softmax

(
¯𝑨𝒇𝜃 (𝑿)

)
, (20)

and the formulation of APPNP is:

𝑯 (0) = 𝒇𝜃 (𝑿)

𝑯 (𝑘) = (1 − 𝛼) ˆ𝑨𝑯 (𝑘−1) + 𝛼𝑯 (0) , 𝑘 = 1, 2, ...𝐾 − 1

�̂� = softmax

(
𝑯 (𝐾)

)
.

(21)

Now we prove that APPNP can be subsumed into the architecture

of decoupled GCN, with
¯𝑨 = (1 − 𝛼)𝐾 ˆ𝑨𝐾 + 𝛼 ∑𝐾−1

𝑘=0
(1 − 𝛼)𝑘 ˆ𝑨𝑘 .

Proof. We prove it by mathematical induction.

Base case:
When 𝐾 = 1, we have �̂� = softmax

(
[(1 − 𝛼) ˆ𝑨 + 𝛼 𝑰]𝒇𝜃 (𝑿)

)
and

¯𝑨(1) = (1 − 𝛼) ˆ𝑨 + 𝛼 𝑰 , which satisfies
¯𝑨(1) = (1 − 𝛼)𝐾 ˆ𝑨𝐾 +

𝛼
∑𝐾−1

𝑘=0
(1 − 𝛼)𝑘 ˆ𝑨𝑘 .

Inductive step:
Assume the induction hypothesis that for a particular 𝐾 ≥ 1

the equations �̂� = softmax

(
¯𝑨(𝐾)𝑯 (0)

)
,

¯𝑨(𝐾) = (1 − 𝛼)𝐾 ˆ𝑨𝐾 +
𝛼
∑𝐾−1

𝑘=0
(1 − 𝛼)𝑘 ˆ𝑨𝑘 hold. Then we have:

�̂� = softmax

(
(1 − 𝛼) ˆ𝑨𝑯 (𝐾) + 𝛼𝑯 (0)

)
= softmax

(
(1 − 𝛼) ˆ𝑨 ¯𝑨(𝐾)𝑯 (0) + 𝛼𝑯 (0)

)
= softmax

(
[(1 − 𝛼) ˆ𝑨 ¯𝑨(𝐾) + 𝛼 𝑰]𝑯 (0)

)
= softmax

(
[(1 − 𝛼) (𝐾+1) ˆ𝑨(𝐾+1) + 𝛼

∑𝐾

𝑘=0

(1 − 𝛼)𝑘 ˆ𝑨𝑘]𝒇𝜃 (𝑿)
)
,

(22)

which satisfies
¯𝑨(𝐾+1) = (1 − 𝛼) (𝐾+1) ˆ𝑨(𝐾+1) +𝛼 ∑𝐾

𝑘=0
(1 − 𝛼)𝑘 ˆ𝑨𝑘 .

Therefore, APPNP can be subsumed into the form of decoupled

GCN, with
¯𝑨 = (1 − 𝛼)𝐾 ˆ𝑨𝐾 + 𝛼 ∑𝐾−1

𝑘=0
(1 − 𝛼)𝑘 ˆ𝑨𝑘 . □

B SOFTMAX FUNCTION
The original formulation of decoupled GCN can be written as:

𝑌 = softmax

(
𝐴𝒇𝜃 (𝑋)

)
. (23)

The role of the outer softmax(·) function is to normalize the output

into a probability distribution, which is reasonable for optimizing

the model with the cross entropy loss.

In our concise formulation of decoupled GCN, the softmax func-

tion has been integrated into feature transformation function as

follows:

𝒇𝜃 (𝑿) = softmax(𝒇𝜃 (𝑿))
�̂� = ¯𝑨𝒇𝜃 (𝑿).

(24)

The major concern is whether its output is reasonable for cross

entropy loss. We now show that although the normalization of

the output from our concise model may not be hold, it is equiva-

lent to optimize the following objective function, where we give

normalized prediction for cross entropy loss.

For arbitrary node 𝑖 in the training set, the loss function is:

𝑙 (𝒚𝑖 ,𝒚𝑖) = −
∑
𝑘∈𝐶

𝑦𝑖𝑘𝑙𝑜𝑔 (𝑦𝑖𝑘)

= −
∑
𝑘∈𝐶

𝑦𝑖𝑘𝑙𝑜𝑔
©«
∑
𝑗 ∈𝑉

𝑎𝑖 𝑗 𝑓𝑗𝑘
ª®¬

= −
∑
𝑘∈𝐶

𝑦𝑖𝑘𝑙𝑜𝑔
©«
∑
𝑗 ∈𝑉

𝑎𝑖 𝑗 𝑓𝑗𝑘∑
𝑞∈𝑉

𝑎𝑖𝑞

ª®®¬ −
∑
𝑘∈𝐶

𝑦𝑖𝑘𝑙𝑜𝑔
©«
∑
𝑗 ∈𝑉

𝑎𝑖 𝑗
ª®¬

= −
∑
𝑘∈𝐶

𝑦𝑖𝑘𝑙𝑜𝑔
©«
∑
𝑗 ∈𝑉

𝑔𝑖 𝑗 𝑓𝑗𝑘
ª®¬ − 𝑙𝑜𝑔 ©«

∑
𝑗 ∈𝑉

𝑎𝑖 𝑗
ª®¬ ,

(25)

where 𝑔𝑖 𝑗 =
𝑎𝑖 𝑗∑

𝑞∈𝑉
𝑎𝑖𝑞

, satisfying

∑
𝑗 ∈𝑉

𝑔𝑖 𝑗 = 1. Thus, we have the nor-

malized prediction

∑
𝑘∈𝐶

∑
𝑗 ∈𝑉

𝑝𝑖 𝑗 𝑓𝑗𝑘 = 1, which meets the constraints.

We can find the first term of the last line in Equation (25) is a cross

entropy loss between the normalized prediction and labels, and the

second term is a constant.

C CONCISE MATRIX-WISE LOSS FUNCTION
Overall, PTA optimizes the following objective function:

𝐿𝑃𝑇𝐴 (𝜃) =
∑

𝑖∈𝑉 ,𝑗 ∈𝑉𝑙
𝑤𝑖 𝑗 CE

(
𝒇𝑖 ,𝒚 𝑗

)
, 𝑤𝑖 𝑗 = 𝑎 𝑗𝑖 𝑓

𝛾

𝑖,ℎ (𝑗) . (26)

The equivalent matrix-wise formulation is concise as follows:

𝐿𝑃𝑇𝐴 (𝜃) = − 𝑆𝑈𝑀
(
𝒀𝑠𝑜 𝑓 𝑡 ⊗ 𝒇 (𝑿)

𝛾

𝑑𝑒𝑡𝑎𝑐ℎ
⊗ 𝑙𝑜𝑔 (𝒇 (𝑿))

)
. (27)

where ⊗ represents the element-wise product, the subscript “detach”

denotes no gradient will be backward-propagated along this term,

and the 𝑆𝑈𝑀 (·) represents the sum of all elements on the matrix.

Proof. First, let’s review the properties of
¯𝑨 and 𝒚𝑖 .

(1) Note that
¯𝑨 is calculated from an adjacency matrix

ˆ𝑨 with

a specific propagation strategy (i.e., ¯𝑨 =
∑
𝑘 𝛽𝑘

ˆ𝑨𝑘). In an

undirected graph, since 𝑨 is a symmetric matrix, we can

conclude
ˆ𝑨 is a symmetric matrix and

¯𝑨 is symmetric too,

i.e., 𝑎𝑖 𝑗 = 𝑎𝑖 𝑗 .
(2) 𝒚 𝑗 is a one-hot vector, where ℎ(𝑗)-th element of 𝒚 𝑗 is 1, i.e.,

𝑦 𝑗,ℎ (𝑗) = 1.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui

We then have:

𝐿𝑃𝑇𝐴 (𝜃) =
∑

𝑖∈𝑉 ,𝑗 ∈𝑉𝑙
𝑤𝑖 𝑗 CE

(
𝒇𝑖 ,𝒚 𝑗

)
= −

∑
𝑖∈𝑉 ,𝑗 ∈𝑉𝑙

𝑎 𝑗𝑖 𝑓
𝛾

𝑖,ℎ (𝑗)

∑
𝑘∈𝐶

𝑦 𝑗𝑘𝑙𝑜𝑔 (𝑓𝑖𝑘)

= −
∑

𝑖∈𝑉 ,𝑗 ∈𝑉𝑙
𝑎 𝑗𝑖 𝑓

𝛾

𝑖,ℎ (𝑗)𝑦 𝑗,ℎ (𝑗)𝑙𝑜𝑔
(
𝑓𝑖,ℎ (𝑗)

)
= −

∑
𝑖∈𝑉 ,𝑗 ∈𝑉𝑙

𝑎 𝑗𝑖

∑
𝑘∈𝐶

𝑦 𝑗𝑘 𝑓
𝛾

𝑖𝑘
𝑙𝑜𝑔 (𝑓𝑖𝑘)

= −
∑

𝑖∈𝑉 ,𝐾 ∈𝐶

©«
∑
𝑗 ∈𝑉𝑙

𝑎 𝑗𝑖𝑦 𝑗𝑘
ª®¬ 𝑓 𝛾𝑖𝑘𝑙𝑜𝑔 (𝑓𝑖𝑘)

= −
∑

𝑖∈𝑉 ,𝐾 ∈𝐶

©«
∑
𝑗 ∈𝑉𝑙

𝑎𝑖 𝑗𝑦 𝑗𝑘
ª®¬ 𝑓 𝛾𝑖𝑘𝑙𝑜𝑔 (𝑓𝑖𝑘)

= − 𝑆𝑈𝑀
(
𝒀𝑠𝑜 𝑓 𝑡 ⊗ 𝒇 (𝑿)

𝛾

𝑑𝑒𝑡𝑎𝑐ℎ
⊗ 𝑙𝑜𝑔 (𝒇 (𝑿))

)
,

(28)

where 𝒀𝑠𝑜 𝑓 𝑡 represents the soft label matrix generated by label

propagation. □

D FRAMEWORK OF PTA
The framework of PTA consists of three parts: data pre-processing,

training and inference.

Data pre-processing. We first calculate the soft label matrix 𝒀𝑠𝑜 𝑓 𝑡
by label propagation. There are various propagation scheme can be

chosen. In this paper, we adopt Personalized PageRank for experi-

ments, which can be written as follow:

𝒀 (0) = 𝒀𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝒀 (𝑘) = (1 − 𝛼) ˆ𝑨𝒀 (𝑘−1) + 𝛼𝒀 (0)

𝒚 (𝑘)
𝑖

= 𝒚𝑖 ,∀𝑖 ∈ V𝑙
𝒀𝑠𝑜 𝑓 𝑡 = 𝒀 (𝐾) .

(29)

𝒀𝑠𝑜 𝑓 𝑡 will be used in the training stage.

Training. In this step, we train the neural network predictor

𝒇𝜃 (·) by optimizing the following objective function:

𝐿(𝜃) = − 𝑆𝑈𝑀
(
𝒀𝑠𝑜 𝑓 𝑡 ⊗ 𝒇 (𝑿)

𝛾

𝑑𝑒𝑡𝑎𝑐ℎ
⊗ 𝑙𝑜𝑔 (𝒇 (𝑿))

)
. (30)

where 𝛾 = log(1 + 𝑒/𝜖) for PTA, 𝛾 = 0 PTS and 𝛾 = 1 for PTD.

Note that we usually use an additional regularization term to avoid

over-fitting.

Inference. After training 𝒇𝜃 (·), following APPNP, ensemble has

been adopted for final prediction. The formulation is:

𝑯 (0) = 𝒇𝜃 (𝑿)

𝑯 (𝑘) = (1 − 𝛼) ˆ𝑨𝑯 (𝑘−1) + 𝛼𝑯 (0) , 𝑘 = 1, 2, ...𝐾 − 1

�̂� = 𝑯 (𝐾) .

(31)

E EXPERIMANTAL DETAILS
The four datasets used in this paper are downloaded from the official

implementation of APPNP [16] in Github. We also follow the data

split of APPNP. Moreover, we follow the same estimation method

Figure 6: The robustness of differentmethods to graph struc-
ture noise.

for accuracy as APPNP, i.e., the average performance across 100

different random initializations and uncertainties showing the 95%

confidence level calculated by bootstrapping. All experiments are

conducted on a a server with 2 Intel E5-2620 CPUs, 8 2080Ti GPUS

and 512G RAM.

Hyper parameters. For fairness, we use the same neural network

model scale as the baseline models: two-layer neural network with

64 hidden units. We also use the same 𝐾 and 𝛼 as APPNP, i.e.,
𝐾 = 10, 𝛼 = 0.1 for three citation graphs, and 𝐾 = 10, 𝛼 = 0.2 for

co-authorship graph. The overall loss function is: 𝐿𝑂𝑆𝑆 = 𝜆1𝐿1 +
𝜆2𝐿2, where 𝐿1 represents loss in Equation 19, and 𝐿2 represents

regularization on the weights of the first neural network layer.

We fix 𝜆2 = 0.005, and find the best 𝜆1 = 0.05. We use the Adam

optimizer with a learning rate of 𝑙𝑟 = 0.1 [14], The dropout rate for

neural model is 0.0. The addition parameter 𝜀 in Equation(17) is

set as 100 for all datasets.

F ROBUSTNESS COMPARISON TO THE
STRUCTURE NOISE

Figure 6 shows the structure noise of our PTA comparing with

APPNP and PTS. As the performance of these methods are so close,

here we just report the noise rate from 10% to 30% to amplify the

difference. Also, the noise rate of the real-world graph is always

on this region. Generally speaking, we can find the performance of

PTA and APPNP are better than PTS. Comparing PTA with APPNP,

their performance are in the same level. But PTA performs slighter

worse than APPNP when the graph has high structure noise rate

(e.g., rate=30%).

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Graph convolution network (GCN)
	2.3 Decoupled GCN
	2.4 Label Propagation

	3 Understanding Decoupled GCN from Label prorogation
	3.1 Propagation then Training
	3.2 Connection between Decoupled GCN and PT
	3.3 Analyzing Decoupled GCN from PT

	4 Proposed method: Propagation Then Training Adapatively
	5 experiments
	5.1 Experimental Setup
	5.2 Empirical Analyses of APPNP (RQ1)
	5.3 Study of Robustness (RQ2)
	5.4 Performance Comparison with State-of-the-Arts (RQ3)
	5.5 Efficiency Comparison (RQ4)

	6 RELATED WORK
	7 Conclusion
	Acknowledgments
	References
	A APPNP to the architecture of decoupled GCN
	B SOFTMAX function
	C Concise Matrix-Wise Loss Function
	D framework of PTA
	E experimantal details
	F Robustness comparison to the Structure Noise

