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Abstract

Large language models (LLMs), known for their comprehension
capabilities and extensive knowledge, have been increasingly ap-
plied to recommendation systems (RS). Given the fundamental gap
between the mechanism of LLMs and the requirement of RS, re-
searchers have focused on fine-tuning LLMs with recommendation-
specific data to enhance their performance. Language Modeling
Loss (LML), originally designed for language generation tasks, is
commonly adopted. However, we identify two critical limitations of
LML: 1) it exhibits significant divergence from the recommendation
objective; 2) it erroneously treats all fictitious item descriptions as
negative samples, introducing misleading training signals.

To address these limitations, we propose a novel Masked Soft-
max Loss (MSL) tailored for fine-tuning LLMs on recommendation.
MSL improves LML by identifying and masking invalid tokens that
could lead to fictitious item descriptions during loss computation.
This strategy can effectively avoid the interference from erroneous

*This work was done during an internship at OPPO Research Institute.

t Corresponding author.

*State Key Laboratory of Blockchain and Data Security, Zhejiang University.
SCollege of Computer Science and Technology, Zhejiang University.

THangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR °25, Padua, Italy

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1592-1/2025/07

https://doi.org/10.1145/3726302.3730041

1912

negative signals and ensure well alignment with the recommen-
dation objective supported by theoretical guarantees. During im-
plementation, we identify a potential challenge related to gradi-
ent vanishing of MSL. To overcome this, we further introduce the
temperature coefficient and propose an Adaptive Temperature
Strategy (ATS) that adaptively adjusts the temperature without
requiring extensive hyperparameter tuning. Extensive experiments
conducted on four public datasets further validate the effectiveness
of MSL, achieving an average improvement of 42.24% in NDCG@10.
The code is available at https://github.com/WANGBohaO-jpg/MSL.
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1 Introduction

Large Language Models (LLMs) have showcased exceptional capa-
bilities in content comprehension and leveraging extensive knowl-
edge, thereby catalyzing a revolution in artificial intelligence [1].
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Recently, LLMs have been extensively applied in the field of Rec-
ommender Systems (RS) [63]. A prominent strategy involves di-
rectly leveraging LLMs as recommenders — organizing users’ his-
torical interactions as language prompts and instructing LLMs
to deduce users’ preferences for predicting future interactions
[16, 19, 35, 55, 59]. This paradigm has demonstrated enhanced few-
shot ability [19, 55], generalization [24], explainability [16], and
impressive recommendation performance [3].

To fully unlock the potential of LLMs in recommendation, su-
pervised fine-tuning (SFT) is commonly applied for LLM-based rec-
ommenders [2, 3, 17, 23, 31, 73]. These methods typically structure
users’ historical interactions as prompts, paired with descriptions
of positive items as target responses, and fine-tune LLMs using
a Language Modeling Loss (LML) [40]. This loss, inherited from
language generation tasks and expressed as a token-wise softmax
loss, augments the probability (i.e., logits) of tokens representing
positive items while penalizing the logits of other generated content.
However, we argue that this objective has significant limitations in
the recommendation scenario:

e Significant Divergence from the Recommendation Ob-
jective: RS aims for personalized ranking performance (e.g.,
higher NDCG), prioritizing positive items over negative ones.
LML deviates significantly from this ranking objective. Through
extensive theoretical and empirical analyses, we find that opti-
mizing LML primarily focuses on generating valid item descrip-
tions that exist in the system, while providing limited guidance
to help LLMs differentiate positive items from negative ones.
This deviation significantly hinders the effectiveness of LML in
recommendations.

o Improper Negative Signals: Language modeling loss implic-
itly considers all other generated item descriptions as negative,
including valid negative items that the user has not interacted
with and fictitious items that do not exist in the RS. This treat-
ment is flawed as it is improper to hypothesize that the user
dislikes these fictitious items. In fact, some fictitious items may
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Figure 2: The schematic diagram illustrates Language Model-
ing Loss (LML) and Masked Softmax Loss (MSL).

share similar semantic with the positive items, whose contents
may be favored by users. As shown in Figure 1, a typical fan of
the Marvel Universe who has watched "Iron Man 1" would likely
enjoy a fictitious movie such as "Iron Man: Al Rebellion". Blindly
treating all such fictitious items as negative could confuse the
LLM in capturing user preferences.

To tackle these limitations, we introduce a novel loss function,
termed Masked Softmax Loss (MSL), specifically designed for
fine-tuning LLMs as recommenders. MSL employs a masking mech-
anism that prevents penalization of fictitious item descriptions.
As illustrated in Figure 2, this mechanism can be implemented ef-
ficiently at the token level by masking the invalid tokens in the
softmax calculation that correspond fictitious items. Our theoretical
analyses further demonstrate the close connection of MSL with
the ranking objective, serving as a tight upper bound of the NDCG
metrics.

Despite its theoretical advantages, MSL may encounter gradient
vanishing issues during practical application. This arises from the
reduced number of tokens in the softmax denominator, which can
lead to particularly small gradients and loss values. A simple and
effective strategy to address this is the introduction of an additional
hyperparameter, temperature, in the softmax function to modu-
late its values. While effective, this approach requires tedious and
time-consuming hyperparameter tuning, which is unsatisfactory
for LLM-based recommendations. To address this challenge, we
propose an Adaptive Temperature Strategy (ATS). By examining the
gradient of MSL and the role of temperature, we derive an adaptive
configuration based on the average number of valid tokens in the
dataset. This strategy effectively mitigates gradient vanishing in
MSL without requiring extensive hyperparameter tuning.

Lastly, in terms of aligning LLM with the ranking objective, the
most relevant work is the recently proposed S-DPO [9], which in-
tegrates Direct Preference Optimization (DPO) [41] in LLM-based
recommendation. However, S-DPO exhibits several limitations: 1)
Suboptimal Performance: S-DPO still relies on LML to fine-tune
the model and considers the fine-tuned LLM as a reference model
for optimization. Given the inherent limitations of LML, the ef-
fectiveness of S-DPO is compromised. 2) Unstable Results: S-DPO
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Table 1: Prompt templates for implementing recommenda-
tion tasks (using Toy dataset as an example)

Instruction Input

Instruction: Given a list of toys the user has played before,
please recommend a new toy that the user likes

to the user.

Input: The user has played the following toys before:
"LeapFrog Discovery Ball", "Plush Elmo Knows

Your Name", "Blokus Game", ...

Instruction Output

"MindWare Q-Ba-Maze Cool Colors"

Output:

requires negative item sampling, which can lead to training insta-
bility, especially in fine-tuning tasks with limited epochs. 3) High
Computational Cost: S-DPO requires more training instances and
epochs, resulting in significantly longer training times (approxi-
mately 4 times) compared to MSL.

In summary, this work makes the following contributions:

e We propose a novel loss function, Masked Softmax Loss (MSL),
specifically tailored for fine-tuning large language models to
effectively align with recommendation objectives.

e We address the potential gradient vanishing issue of MSL by
developing an adaptive temperature strategy that mitigates this
issue without requiring hyperparameter tuning.

o Extensive experiments on four real-world datasets demonstrate
that the proposed MSL outperforms LML by a large margin
(42.24% on average in NDCG@10).

2 LLM-based Recommendation

Referring to recent work [2, 3, 31, 32, 37, 73], this work also focuses
on sequential recommendation, which holds notable practical sig-
nificance by considering the temporal order of user behavior. Given
a sequential recommender system with a user set U and an item
set V, let user’s historical interactions be denoted as S = {s1, s2, ...},
where s; € V denotes the i-th interacted item in the sequence. The
objective of sequential recommendation is to infer user preferences
from S and retrieve the positive item p that the user will interact
with next. This task is often conceptualized as a ranking problem,
aiming to position the positive item p higher in the ranking list. Con-
sequently, ranking metrics such as NDCG are frequently adopted
to evaluate recommendation performance.

Given the remarkable success of large language models (LLMs)
across various domains [38, 49, 61], integrating LLMs into recom-
mendation systems has been extensively explored [63]. A prominent
strategy is to directly leverage powerful LLMs as recommenders. As
shown in Table 1, this paradigm organizes users’ historical interac-
tions as language prompts x, typically consisting of the descriptions
(e.g., titles) of the items in S and the description of the recommenda-
tion task. This prompt is then used to instruct the LLMs to predict
the item (descriptions) that the user is most likely to interact with.

Since LLMs are typically not pre-trained on recommendation
data, supervised fine-tuning is necessary to align LLMs with the
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Table 2: Notations in the paper.

Notations  Descriptions

U user set

Vv item set

S the user historical interaction sequence
p the positive item of the sequence S

x the input prompt of the sequence S

y° the description of the item v

y? t-th token of y?

Z the vocabulary of LLM

Zoalid(y%;) valid tokens for a given prefix y2,

0 the model parameter

fo logits output by the model

Py (y?) the probability of y? over Z
Pg“l’d(yf) the probability of y? over Zyq1iq(y2;)
Limr language modeling loss

LymsL masked softmax loss

recommendation task. This strategy pairs the prompts x and the de-
scription of the target positive item y? as a training instance (x, y?),
and optimizes LLMs with the following Language Modeling Loss
(LML):

[yP|
Limi(xyP50) = ~log Py (v | x) = )" ~log Py (5/57 I x,yﬁt)
t=1
i exp(fo (4 1% 12,))
=1 Yzez exp(fylzlx )

1)
where yf denotes the ¢-th token of the positive item description
yP, and yzt represents the token sequence preceding yf The set
Z corresponds to the entire vocabulary of tokens in the LLM, and
Jo (yf‘J | x,4% ;) denotes the logit of the token yf predicted by LLMs,
where 6 denotes the parameters of LLMs. For simplicity, we use
fo(W}) (or fy(2)) to represent fy(y; | x.y2,) (or fo(z | x,y2,)) and
Pg(yf) to denote Pg(yf | x, yﬁt),

The language modeling loss is directly inherited from language
generation tasks, aiming to maximize the probability of the descrip-
tions of positive items over the whole generative content space. It
can be expressed in a token-wise manner with softmax loss, which
augments the logits of the tokens representing positive items (nu-
merator), while decreasing the logits of the other tokens in the
vocabulary (denominator).

The notation table is presented in Table 2.

3 Analyses on Language Modeling Loss

While language modeling loss is commonly used for fine-tuning
LLMs as recommenders, we argue that it still suffers from the fol-
lowing limitations:

Limitation 1: Significant Divergence from the Recommen-
dation Objective. Recommender systems aim to retrieve positive
items from the valid item set in the system. In contrast, LML aims to
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retrieve positive item descriptions from the entire language space
that LLMs could generate. It’s important to note that the language
space contains descriptions of both valid items in the system and
fictitious items imagined by LLMs. This causes the objective of LML
to deviate significantly from the recommendation objective.

To better understand this deviation, we can decompose LML into
two components:

Limr(x, yp;e) = LiML(x’ yp§9) + ‘EiML(x’ yp§9) ()
i )y exp(fp(2))
Zoatia(y?,) PYO
LY (x4 0) = —log =25 <t 3
b (o950 = ) ~log = @) ®
Lifting valid items over invalid items
57| P
exp(fo(y;))
Ly (eyfs0) = ~log 5 oG @
t=1 ZEZvalid(ygt) explJelz

Lifting the positive items over negative items

where z € Zva“d(yit) denotes a valid token, ensuring that the
combined language contents [yﬂt, z] can be a prefix of any valid
item description. A similar definition applies to invalid tokens,
z ¢ Zvalid(yit)’ which would make the generated contents fall
outside the scope of valid items’ descriptions. For simplicity, we
use Zyqliq to denote Zvalid(yit) in the following text.
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Table 3: The deviation of NDCG@ 10 under multiple random
seeds.

Method

S-DPO
MSL

Book

0.0219 + 0.0036(16.4%)  0.0124 + 0.0019(15.3%)
0.0294 + 0.0006(2.0%)  0.0175 % 0.0005(2.9%)

Toy

Language modeling loss has two-fold effects: 1) .Li M, Increases

the logits of valid tokens while penalizing the invalid tokens. This
component would lift the probability of valid items over fictitious
items, guiding the LLMs towards outputting a valid item descrip-

tion. 2) L% g, increases the logits of the positive token (i.e., yf )

and penalizes the logits of negative tokens (i.e., Zyarig \ yf ). This
component would lift the probability of positive items over negative
items, which aligns with the recommendation objective. We will
also prove the close theoretical connection of this component with
the NDCG metrics in the next section (lemma 1).

The above decomposition illustrates the differences and connec-
tions between LML and the recommendation objective. While the
recommendation objective serves as one component of LML, we
empirically find that optimizing LML is ineffective, as the gradient
is dominated by Li - Figure 3 illustrates this point, showing the
norm of the gradient from two components on typical datasets Toy
and Book. It can be observed that Li 1, €xerts an overwhelming
effect on the training, hindering the convergence of L% - To fur-
ther demonstrate this point, we conduct another experiment as
shown in Figure 4, where we visualize the training loss of Li ML
when we optimize L1 or .Ei . only for comparison. As can be
seen, the training loss when we directly optimize L% w1, decreases
quickly, while the loss drop under optimizing L 31 seems hindered.
These analyses demonstrate the ineffectiveness of leveraging LML
in improving recommendation performance.

Limitation 2: Improper Negative Signals. From Eq.(2), we
find that LML penalizes the logits of invalid tokens, implicitly con-
sidering all fictitious items that are not exist on the system as
negative items. However, this treatment is flawed as it is improper
to hypothesize that the user dislikes these fictitious items. In fact,
some fictitious items may share semantic similarities with positive
items and could potentially align with user preferences. To illus-
trate this issue, consider the example of a typical fan of the Marvel
Universe who enjoys the movie "Iron Man 1" as shown in Figure 1.
Some of the fictitious items may share semantic similarities with
the positive items and may be favored by users (e.g., "Iron Man: Al
Rebellion"). Additionally, certain items are fictional simply because
they have not yet been released (e.g., "Iron Man 4"). As such, blindly
treating all such fictitious items as negative could confuse the LLM,
giving incorrect signals for capturing user preference.

Analyses on S-DPO. While S-DPO [9] leverages direct prefer-
ence optimization to enhance LLM-based recommendation, it still
suffers from the following limitations:

e Suboptimal Performance. S-DPO can not address the afore-
mentioned limitations inherent in LML. S-DPO still relies LML
to fine-tune LLMs, which would be utilized as a reference model
for further DPO optimization. Given the inherent limitations
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of LML, the effectiveness of S-DPO is compromised (cf. Section
5.2).

Unstable Performance. S-DPO relies on sampling negative
items to establish the ranking relationship between positive and
negative items. However, this sampling process incurs perfor-
mance instability. To evaluate this, we train the model using mul-
tiple random seeds and calculated the deviation of NDCG@10.
As shown in Table 3, S-DPO exhibits significantly higher devia-
tion compared to our proposed MSL, with performance losses
reaching up to 16.4% on the Toy dataset and 15.3% on the Book
dataset. This highlights the instability of S-DPO’s performance.
High Computational Cost. S-DPO requires further fine-tuning
on the reference model, which entails additional training epochs.
Furthermore, the inclusion of extra negative items substantially
increases the data size. These factors contribute to its ineffi-
ciency. Empirically, S-DPO requires nearly four times the run-
time of MSL and LML (cf. Section 5.4).

4 Methodology

In this section, we first detail the proposed Masked Softmax Loss
(MSL) to address the limitations of language modeling loss (Sub-
section 4.1). We then highlight the potential gradient vanishing
challenge in MSL and propose the Adaptive Temperature Strategy
to tackle this issue (Subsection 4.2). The schematic diagrams of the
MSL and LML methods are shown in Figure 2.

4.1 Masked Softmax Loss

The above analyses reveal that the limitations of LML primarily lie
in the penalization of invalid tokens — it not only causes the loss
to deviate from the recommendation objective but also introduces
improper negative signals. To address this, a straightforward ap-
proach is to mask the invalid tokens in LML, i.e., directly leverage
the second component of LML to optimize LLMs. Formally, the
Masked Softmax Loss is formulated as follows:

bk exp(fo (u7)
4P 0) = -1 -
Lmse(x.y7:0) ; e Zou P (3 (2) ©

This simple strategy effectively addresses the limitations by elim-
inating the penalization of invalid tokens. One might be concerned
that this strategy could increase the risk of hallucination [21], where
LLMs generate fictitious item descriptions during the inference
stage. This concern can be easily mitigated by employing con-
strained beam search during generation [11]. Specifically, when
choosing or sampling the next token in beam search, the selection
can be restricted to valid tokens rather than the entire vocabulary.
Such strategy ensures that the generated content corresponds to
a valid item in the system, effectively mitigating the hallucination
issue.

Overall, MSL possesses the following desirable properties:

Alignment with the Recommendation Objective. Intuitively,
masking invalid tokens guide the model to focus more on differ-
entiating positive items from negative ones. In fact, we have the
following lemma establishing the theoretical connections between
MSL and NDCG:
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LEmMMA 1. Considering a LLM-based RS that leverages the scores
Pgalid(yle) = 'il' P§“’id(yf|x, yY,) for ranking items, where
exp(fo(y7))
Zzezvalid(ygt) eXp (fG(Z))

represents the probability of the token y7 within the valid token set
ZoatidW2,), optimizing Lysy (x, yP; 0) serves as a tighter upper
bound of ~logNDCG(S) compared with Ly (x,y?;0), ie.,

~logNDCG(S) < Lsr (x,yP;0) < Loy (x,yP;0)

Paalid (4013, y2,) =

The proof is presented in the appendix. Note that the premise
of ranking items based on Pg“lid(y”|x) is naturally satisfied when
we mask invalid tokens during generation using constrained beam
search with a large beam size. This lemma demonstrates that MSL
is well-aligned with the recommendation objective and provides
a tighter upper bound for optimizing NDCG compared to LML.
Li i, in LML is redundant for NDCG optimization and may even
introduce interference as previously discussed. Consequently, MSL
is theoretically anticipated to achieve superior performance.

Ease of Implementation. Our MSL is simple, easily imple-
mented, and can serve as a suitable surrogate for LML with minimal
code revisions. The main implementation complexity lies in identi-
fying valid tokens. In fact, this can be easily achieved by using a
trie tree (a.k.a. a prefix tree) [4]. We can utilize existing packages
of marisa-trie (with only 3 lines of codes) to construct the trie tree
from all item descriptions during the pre-processing stage and cal-
culate the masking matrix. Subsequently, we can revise the LML
to MSL by simply applying the masking matrix. MSL can be seam-
lessly integrated into various existing LLM-based recommendation
methods, including the recently proposed BIGRec [2], LLaRA [31],
A-LLM [23], and consistently yield improvements (cf. section 5.2).

Efficiency. The primary computational challenge lies in con-
structing the trie tree and the masking matrix. However, this process
is highly efficient, with a time and memory complexity of O(l(V|i),
where |V| denotes the number of items in the system, and I repre-
sents the average token length of the item description. Empirically,
the Trie tree construction for all datasets is completed in under one
second. Furthermore, MSL improves efficiency by excluding invalid
tokens from the loss calculation (cf. section 5.4).

4.2 Adaptive Temperature Strategy

4.2.1 Potential Gradient Vanishing Issue. Despite the theoretical
advantages of MSL, it may encounter gradient vanishing issues in
practical applications, challenging its effectiveness. To illustrate
this effect, the gradient of MSL over each sample can be expressed
as follows:

[y?|
VoLusL(x,y7:0) == > w(yh)g(y}.0) ©)
t=1
where
w(yl) = 1- Pl | x4 ) (7)
ez v
g(yp,e) _ Vefe(yf) _ 2z Z exp(fp(2)) Vo fo(z) (®)

2zez exp(fo(2))

Z' = Zyatia \ {yf} represents the set of negative tokens. For
simplicity, let Pg“”d(yf ) represent Pg“lid(yf | x, yﬂt).
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Figure 5: The weight value w(yﬁ7 ) distribution of a batch of
samples for MSL and LML. The weight are sorted in descend-
ing order.

As observed, the magnitude of gradient is influenced by the
weight w(yf ). The gradient vanishing phenomenon can be attrib-
uted to a reduced number of terms in the denominator of Pg“l id (yf )
as compared with Pg(yf), which naturally increases Pg“lid(yf),

thereby decreasing the weight w(yﬁJ ). This reduction can even
cause the gradient to approach zero, particularly because the logits
of positive tokens are often larger than those of other valid tokens!.

Figure 5 presents the weight values of a batch of samples for both
LML and MSL. When the valid token mask is applied to MSL, the
weight values of all samples are substantially reduced, with some
values even nearing zero. Importantly, these tokens are often crucial,
as they are typically located among the first few tokens in the re-
sponse and play a pivotal role in training. Empirical analysis on the
Office dataset underscores this point: 61% of samples with weight
values below 0.1 are concentrated within the first three tokens of
the item. Similar patterns are observed across other datasets.

4.2.2  The Introduction of Temperature. To tackle this issue, we
have found that the introduction of a temperature 7 can effectively
address this problem:

& exp(fo(4})/7)
o) = ) 1l v
Lust 930 = ), ~log 5o @iy O
where the weight w(yf ) can be written as:
Py _ 1 _ poalid o exp(fy(y))/7)
W) =1 ) = s e e 1Y

The introduction of temperature can modulate the magnitude
of the gradient. Considering that the logits of positive tokens are
typically larger than those of other tokens, an increase in 7 would
relatively reduce the value of Pg“lid(yf ), increasing w(yﬁ7 ); Figure 6
highlights the impact of incorporating temperature, which leads to
a significant improvement in performance. Conversely, alternative
approaches, such as adjusting the learning rate or introducing a
balancing coefficient for negative tokens, fail to yield satisfactory
results. The empirical evidence supporting these findings will be
presented in Section 5.3.

!This assumption is reasonable, as the optimization process tends to increase the logits
of positive tokens while decreasing those of negative tokens.
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Figure 6: The performance of MSL across different tempera-
ture 7.

4.2.3 Adaptive Temperature Strategy. Despite its effectiveness, the
introduction of 7 incurs another hyperparameter tuning challenge.
Given that the average number of valid tokens varies across differ-
ent datasets, the optimal value of 7 naturally evolves. For example,
the optimal 7 on dataset Book is 1.5, while it is 4.5 on Toy as shown
in Figure 6. Transferring the optimal 7 from one dataset to another
without adjustment can lead to significant performance drops. This
necessitates extensive hyperparameter tuning of 7, which can be
particularly time-consuming, especially for heavy LLM-based rec-
ommenders.

To address this, inspired by recent studies on temperature [7],
we develop an Adaptive Temperature Strategy (ATS) for MSL. This
strategy dynamically and adaptively adjusts 7 to ensure that Pg“l id(yf )
remains close to a target value 7, preventing it from becoming ex-
cessively large and incurring gradient vanishing. Specifically, we
have the following lemma:

LEMMA 2. For each training token instance (x, yf), assuming the
logits of the valid tokens fp(z),z € Zya1iq follow a Gaussian distri-
bution N (pt,0?). Then 1; for the equation Pg“lid(yf) = 1 can be
approximated as:

o)) = ) = o y}) — )? = 207 10 Zaatial)
B 2log(| Zuatial)

The proof is presented in the appendix. The proof references
the work [7] but adapts the process to token-wise LLM-based rec-
ommendation scenarios and different distribution conditions. The
assumption of a Gaussian distribution nearly holds, as discussed in
the appendix.

Eq.(11) gives the token-wise optimal configuration of 7;. To make
the training more stable and reduce the extra effort of calculating
the token-wise 7;, we prefer to set a global uniform 7 across various
training instances:

o) = = a(y]) —w)? ~ 207 logmy
b 2logmn

Tt

(12)

T

where 1, 0% denote the mean and variance of f;(z) for all training
instances, and m denotes the average number of valid tokens. This
Eq.(12) can adaptively adjust the value of 7 according to the current
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Table 4: Statistics of the datasets. AVT represents the average
number of valid tokens per token instance.

Dataset  #Users #ltems #Interactions #Density #AVT
Toy 19124 11758 165247 0.0735%  54.38
Book 16559 6344 151928 0.1446%  70.90
Clothing 39230 22948 277534 0.0308%  53.74
Office 4895 2414 53149 0.4498% 8.98

model state and the average number of valid tokens in the datasets,
serving as an efficient alternative to brute-force hyperparameter
search.

5 Experiments
We aim to answer the following research questions:

e RQ1: How does MSL perform compare to existing state-of-the-
art recommendation methods?

e RQ2: How do different components of MSL affect?

e RQ3: How does MSL perform compared with state-of-the-art
in terms of both accuracy and efficiency?

5.1 Experimental Settings

5.1.1 Datasets. Four conventional real-world datasets: Amazon
Toys and Games, Amazon Books, Amazon Clothing, Shoes and Jewelry
and Amazon Office Products ? are utilized in our experiments, which
are commonly used for the studies of LLM-based recommendation
[2, 5, 10, 25, 28]. To ensure a fair comparison, we adopt the same
data preprocessing used in recent studies [2, 10]. Specifically, we
firstly apply the 5-core setting to the original dataset, then for user
interaction sequences longer than 11 interactions, a sliding window
of length 11 is applied to segment the sequences. The resulting
sequences are then sorted in ascending order by timestamp and
split into training, validation, and testing sets with an 8:1:1 ratio.
We randomly retain 100,000 items for Amazon Books before 5-core
processing due to its large size. The processed dataset statistics are
presented in Table 4.

5.1.2  Baselines. The methods compared fall into several categories:

e Traditional recommenders (SASRec [22], BERT4Rec [46],
DROS [69]) SASRec utilizes a self-attention-based model to cap-
ture user interests. BERTRec adopts the BERT to bidirectional
model user preferences. DROS incorporates DRO to improve
the model’s resilience to distributional shifts.

LLM-enhanced recommenders (DLLM2Rec [10], LLM-CF
[47]) DLLM2Rec introduces a distillation module designed to
bridge the performance gap between LLMs and traditional
RS. LLM-CF enhances traditional RS by integrating reasoning-
driven collaborative filtering features derived from LLMs us-
ing CoT techniques. We use SASRec as the backbone for LLM-
enhanced recommenders.

LLM-based recommenders (BIGRec [2], LLaRA [31], A-
LLM [23]) BIGRec develops instruction-tuning templates to
fine-tuning LLMs on RS datasets. LLaRA enhances collaborative

Zhttps://jmcauley.ucsd.edu/data/amazon/index_2014.html
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signals by incorporating embeddings produced by traditional
models into prompts. A-LLM further alignes these embeddings
with corresponding textual information.

e Improved Loss Function for LLM-based Recommenders
(S-DPO [9]) S-DPO leverages the DPO to guide LLMs using
the ranking information of positive and negative samples.

5.1.3 Implementation Details. LLaMA3 8B model [12] is utilized as
the backbone of all the LLM-based recommenders. As for training
LLM-based recommenders, we train the models for 10 epochs and
report the results of the epoch with the highest NDCG@5. For infer-
ence, we evaluate two mainstream methods as baselines: grounding
[2] and constrained beam search [74], and we report the better-
performing results. The ranking results obtained from constrained
beam search are used to construct the recommendation list, with
the number of beams fixed at 10. For MSL, we only modify the
loss function of the original backbone while following its original
hyperparameter settings. The parameter 7 is set to 0.25. To ensure
fair comparisons, we leverage the source code provided in the orig-
inal papers and tune the hyperparameters of all baseline methods
following the guidelines specified in their respective works. Two
widely-used metrics NDCG@K and Hit Ratio@K are employed for
evaluating the recommendation accuracy (K = 5, 10).

5.2 Performance Comparison (RQ1)

Table 5 provides a comparative analysis of the performance of the
proposed MSL method against baseline approaches.

MSL demonstrates a significant enhancement in the perfor-
mance of various LLM-based recommenders. MSL consistently
outperforms all baseline across all datasets. This remarkable im-
provement can be attributed to the design of MSL as a specialized
loss function tailored for LLM-based recommenders.

The performance improvements of LLM-enhanced recom-
menders remain relatively limited. LLM-CF exhibits negative
gains on three out of the four datasets. This underperformance is pri-
marily due to the inherent gap between LLMs and traditional mod-
els, which hinders the effective transfer of knowledge. DLLM2Rec,
which directly generates ranking results using LLMs and incor-
porates a specially designed distillation mechanism, partially ad-
dresses this gap. However, its performance remains constrained by
the limitations of LLMs’ recommendation capabilities as teacher
models.

S-DPO demonstrates limited and inconsistent performance
improvements in LLM-based recommendation systems. Its
dependence on the reference model, coupled with instability intro-
duced by sampling, significantly constrains its effectiveness. As a
result, S-DPO often fails to deliver consistent improvements, and
in some cases, even demonstrates negative performance gains. For
example, NDCG@10 of A-LLM+S-DPO decreases from 0.0132 to
0.0093 on the Book dataset.

5.3 Ablation Study (RQ2)

Table 6 presents the results of ablation study. Specifically, we in-
vestigate the effects of MSL, temperature 7 and the ATS module, as
well as alternative approaches to mitigating the vanishing gradient
problem.
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Table 5: The performance comparison on four real-world datasets. The best result is bolded. Improvement denotes the
improvement of MSL over the best results obtained using LML and S-DPO. "N" represents NDCG, and "H" represents Hit Ratio.

‘ Toy ‘ Book ‘ Clothing ‘ Office

Meth

ethod | N@e5 N@10 H@5 H@10 | N@5 N@10 H@5 H@10| N@5 N@10 H@5 H@E10 | N@5 N@10 H@5 H@10
SASRec 0.0101  0.0126 0.0190  0.0265 | 0.0097 0.0133 0.0176 0.0285 | 0.0046 0.0056 0.0086 0.0116 | 0.0132  0.0183  0.0260  0.0421
BERT4Rec 0.0157  0.0191  0.0229 0.0336 | 0.0118 0.0171 0.0187 0.0351 | 0.0071 0.0093 0.0110 0.0180 | 0.0225 0.0307  0.0358  0.0618
SASRec+DROS | 0.0129  0.0160 0.0217 0.0311 | 0.0110 0.0156 0.0196  0.0340 | 0.0050 0.0067 0.0088 0.0142 | 0.0130  0.0226  0.0260  0.0561
LLM-CF 0.0103 0.0132 0.0186 0.0275 0.0106 0.0142 0.0178 0.0292 0.0041 0.0052 0.0074 0.0116 0.0144 0.0192 0.0239 0.0395
DLLM4Rec 0.0104 0.0134 0.0190 0.0284 0.0099 0.0136 0.0178 0.0303 0.0042 0.0061 0.0082 0.0138 0.0137 0.0198 0.0239 0.0504
BIGRec+LML | 0.0138 0.0182 0.0213 0.0353 | 0.0109 0.0137 0.0169 0.0258 | 0.0047 0.0073  0.0092 0.0174 | 0.0113  0.0220  0.0203  0.0530
BIGRec+SDPO | 0.0174 0.0219  0.0271 0.0413 | 0.0118 0.0145 0.0189  0.0276 | 0.0062 0.0089 0.0114 0.0198 | 0.0129  0.0256  0.0239  0.0629
BIGRec+MSL | 0.0245 0.0288 0.0357 0.0488 | 0.0125 0.0172 0.0214 0.0356 | 0.0091 0.0120 0.0146 0.0236 | 0.0402 0.0438 0.0556  0.0665
Improvement | 41.06% 31.35% 3154% 18.18% | 570% 1855% 13.25% 28.93% | 46.05% 34.52% 28.07% 19.19% | 213.17% 70.80% 132.61% 5.79%
LLaRA+LML 0.0145 0.0193  0.0225 0.0375 | 0.0102 0.0132 0.0173  0.0265 | 0.0050 0.0083 0.0088 0.0190 | 0.0093  0.0204 0.0177  0.0514
LLaRA+SDPO 0.0164 0.0211 0.0250 0.0394 0.0094 0.0114 0.0128 0.0187 0.0077 0.0099 0.0138 0.0206 0.0196 0.0242 0.0379 0.0524
LLaRA+MSL ‘ 0.0233 0.0283 0.0336  0.0488 ‘ 0.0135 0.0175 0.0244 0.0365 ‘ 0.0108 0.0140 0.0176 0.0274 ‘ 0.0374 0.0417 0.0535 0.0670
Improvement | 41.98% 34.05% 34.17% 23.81% | 31.96% 32.71% 40.79% 37.93% | 40.12% 41.61% 27.54% 33.01% | 90.87% 72.08% 41.10% 27.82%
A-LLM+LML | 00151 0.0197 0.0236 0.0378 | 0.0107 0.0132 0.0173  0.0251 | 0.0055 0.0082 0.0100 0.0182 | 0.0110  0.0219  0.0192  0.0519
A-LLM+SDPO | 0.0155 0.0201  0.0248 0.0388 | 0.0065 0.0093 0.0094 0.0180 | 0.0072 0.0104 0.0116 0.0216 | 0.0189  0.0240  0.0306  0.0468
A-LLM+MSL | 0.0248 0.0296 0.0365 0.0513 | 0.0130 0.0184 0.0228 0.0395 | 0.0097 0.0127 0.0158 0.0252 | 0.0353  0.0388  0.0488  0.0597
Improvement | 59.81% 47.73% 47.06% 32.26% | 21.01% 39.44% 31.58% 57.27% | 34.65% 2254% 3621% 16.67% | 86.84% 6146% 59.32%  15.00%

Adjusting the temperature 7 significantly enhances MSL
performance. MSL without temperature underperforms compared
to LML on certain datasets (e.g., Toy and Office) due to the vanish-
ing gradient issue. Employing an hyperparameter search strategy
for the 7 effectively addresses this issue, resulting in substantial
performance improvements. This highlights the critical role of ¢
in unlocking MSL’s potential. Notably, a similar hyperparameter
search for LML revealed only marginal performance gains, suggest-
ing that the observed improvements are attributable to MSL itself
rather than the tuning of 7.

The ATS module rivals or surpasses brute-force hyperpa-
rameter search in effectiveness. This demonstrates the efficacy
of ATS as a dynamic optimization strategy. ATS offers better flexi-
bility than fixed temperature and eliminates the need for exhaustive
manual tuning.

Alternative strategies for mitigating vanishing gradients
show limited effectiveness. We also investigate two alternative
strategies to address the vanishing gradient problem in MSL: ad-
justing the learning rate (i.e., MSL + tuning Ir) and introducing a
balancing coefficient a for negative tokens (i.e., MSL + a, where the
negative token component in the denominator of Ly is multi-
plied by a). a is set as | Z|/| Zyalid|- While these adjustments yielded
minor improvements, the results remained significantly inferior to
those achieved through temperature adjustment.

5.4 Efficiency Comparison (RQ3)

In this section, we analyze and compare the efficiency and perfor-
mance of various methods. As illustrated in Figure 7, MSL achieves
optimal recommendation performance while simultaneously demon-
strating superior computational efficiency. Specifically, MSL im-
proves efficiency by 315% and 324% on the Toy and Book datasets,
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Table 6: Ablation study. Results are reported in NDCG@ 10.
"+tuning 7" indicates performing a hyperparameter search
for the temperature 7. "+tuning Ir" indicates performing a
hyperparameter search for the learning rate. "+ o" denotes
introducing a coefficient for negative tokens. MSL (w/o 7)
represents MSL without the temperature. MSL (w/ ATS) rep-
resents MSL with the temperature adjusted using ATS.

Method ‘ Toy  Book Clothing Office
LML 0.0182 0.0137 0.0073 0.0220
LML + tuning 7 | 0.0182 0.0146 0.0074 0.0248
MSL (w/o 7) 0.0171  0.0151 0.0097 0.0135
MSL + tuning Ir | 0.0184 0.0151 0.0101 0.0177
MSL + «a 0.0202  0.0157 0.0078 0.0221
MSL + tuning 7 | 0.0280 0.0182 0.0130 0.0418
MSL (w/ ATS) 0.0288 0.0172 0.0120 0.0438

respectively, compared to S-DPO. In comparison to LML, MSL
achieves efficiency gains of 4.4% and 6.7% on the same datasets.
The enhanced efficiency of MSL stems from its ability to sig-
nificantly reduce the number of invalid tokens. MSL restricts the
scope to a small subset of valid tokens (the average number of
valid tokens for each dataset is shown in Table 4) compared to
the 128,000 tokens in LLaMA3 vocabulary. This targeted approach
minimizes computational overhead. The only additional overhead
introduced by MSL arises from the construction of the Trie tree
during the data preprocessing stage. As discussed in Section 4.1,
this process is highly efficient. Table 7 shows that the consuming
time for all datasets is consistently within one second. In contrast,
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Figure 7: Performance comparisons in terms of both recom-
mendation accuracy and efficiency.

Table 7: Time of constructing trie tree.

Dataset Toy Book Clothing Office

0.38s

Time 0.17s 0.81s 0.23s

S-DPO introduces additional computational overhead by requir-
ing the sampling of n negative samples for each positive sample,
leading to approximately four times runtime compared to MSL.

6 Related Work

6.1 Sequential Recommendation

Sequential recommendation aims to predict the next item of interest
for a user based on their historical interactions. It has increasingly
adopted various deep learning models over recent years. For ex-
ample, GRU4Rec [18] leverages recurrent neural networks (RNNs),
while Caser [48] utilizes convolutional neural networks (CNNs).
More recently, models such as SASRec [22] and BERT4Rec [46] are
built upon the self-attention mechanism [8, 50], which automati-
cally assigns weights to each interaction to capture their relative
importance. Additionally, DROS [69] incorporates distributionally
robust optimization (DRO) [42, 62] to improve the model’s robust-
ness to out-of-distribution scenarios, which are common in RS
[6, 14, 15, 33, 51, 72]. The readers may refer to the survey [13, 56]
for more details.

6.2 LLMs for Recommendation

Large language models (LLMs), with their powerful comprehension
capabilities and extensive knowledge [1, 12, 52], have been widely
applied in RS. Two primary paradigms for using LLMs in RS as
following.

LLM-based Recommenders. This paradigm attempts directly
leveraging pre-trained LLMs as the backbone for recommendations
using their zero-shot capabilities [16, 19, 35, 55, 59]. However, these
methods often perform poorly due to the significant discrepancy
between the recommendation tasks and the training objectives of
LLMs [68]. To address this, subsequent research has reformulated
recommendation data into prompt formats and fine-tuned LLMs to
improve their performance, achieving better results [2, 3, 17, 20, 26,
27, 29, 30, 34, 45, 53, 54, 57, 65, 70, 71, 74].
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However, these studies all rely on the LML for fine-tuning, with-
out addressing the inherent misalignment between LML and rec-
ommendation tasks. To address this issue, S-DPO [9] builds upon
DPO [41] by constructing positive and negative samples, explicitly
incorporating ranking information into the model training process.
However, it suffers from performance instability, limited effective-
ness, and low efficiency. Our proposed MSL effectively addresses
these issues and significantly improves the performance of LLM-
based RS.

LLM-enhanced Recommenders. This paradigm primarily uti-
lizes LLMs in auxiliary roles, such as encoders to embed the seman-
tic information of users and items [25, 43, 44, 54, 60, 64, 66], as an
additional knowledge base [39, 67], as a reasoning tool to generate
chain-of-thought (CoT) data [47, 58], or serves as teachers using
distillation [10, 36]. The main challenge of this paradigm lies in
the significant gap between LLMs and traditional recommendation
models, which hinders the effective transfer of knowledge.

7 Conclusion

In this paper, we introduce a novel loss function, MSL, specifically
tailored for LLM-based RS. MSL excludes invalid tokens from partic-
ipating in the loss calculation, achieving better alignment with the
recommendation objectives and avoid the interference from erro-
neous negative signal. Despite its advantages, it can lead to gradient
vanishing issues during training. To mitigate this, we introduce
the temperature coefficient and propose an Adaptive Temperature
Strategy, which adaptively adjusts the temperature without requir-
ing extensive hyperparameter tuning. We validate the effectiveness
of MSL through theoretical analysis and empirical experiments.
Our findings demonstrate that MSL significantly improves the per-
formance of state-of-the-art LLM-based recommendation models.
This study highlights the importance of optimizing LLMs for
recommendation tasks by refining their loss functions. Future re-
search could explore the design of specialized LLM architectures to
further enhance their suitability for recommendation systems.
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