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ABSTRACT
Recommendation from implicit feedback is a highly challenging

task due to the lack of reliable negative feedback data. Only pos-

itive feedback are observed and the unobserved feedback can be

attributed to two reasons: unknow or dislike. Existing methods ad-

dress this challenge by treating all the un-observed data as negative

(dislike) but downweight the con�dence of these data. However,

this treatment causes two problems: (1) Con�dence weights of the

unobserved data are usually assigned manually, which lack �exi-

ble and may create empirical bias in evaluating user’s preference.

(2) To handle massive volume of the unobserved feedback data,

most of the existing methods rely on stochastic inference and data

sampling strategies. However, since users are only aware of a very

small fraction of items in a large dataset, it is di�cult for existing

samplers to select informative training instances in which the user

really dislikes the item rather than does not know it.

To address the above two problems, we propose a new recom-

mendation method SamWalker that leverages social information to

infer data con�dence and guide the sampling process. By modeling

data con�dence with a social context-aware function, SamWalker

can adaptively specify di�erent weights to di�erent data based on

users’ social contexts. Further, a personalized random-walk-based

sampling strategy is developed to adaptively draw informative

training instances, which can speed up gradient estimation and re-

duce sampling variance. Extensive experiments on three real-world

datasets demonstrate the superiority of the proposed SamWalker

method and its sampling strategy.
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1 INTRODUCTION
With the exponential growth of information on electronic com-

merce websites such as Amazon and Taobao, recommender sys-

tems are drawing more attention from both academia and industry

[6, 15, 16, 25, 27, 39, 56, 61]. Collaborative �ltering (CF), as the

prevalent recommendation model in these systems, infers user’s

preference and produces recommendations based on user’s his-

torical behaviors. Early work on CF mainly focused on explicit

feedback, where the numerical ratings which directly re�ect users’

preference are provided.

However, explicit feedback may not be available in many appli-

cations. We usually only have access to implicit feedback derived

from user actions, e.g. users’ video viewing and product purchasing

history. Although implicit feedback is abundant in practice, rec-

ommendation from implicit feedback is more di�cult than from

explicit feedback. The reason is that learning from implicit feedback

lacks reliable negative feedback data, i.e. only the positive feedback

are observed in the implicit feedback data. The un-observed user-

item feedback data (e.g. a user has not bought an item yet) are

a mixture of real negative feedback (a user does not like it) and

missing values (a user just does not know it). While the positive

feedback suggests that the user likes the item, the un-observed

feedback does not necessarily mean the user dislikes the item. In

most cases, users may just not know the items that they have not

consumed.

Existing methods address this problem by treating all the un-

observed data as negative (dislike) but downweight the con�dence

of these data. Most of these methods rely on the careful assignment

of con�dence weights to the data. Although it may be e�ective,

choosing these weights usually involves heuristic alterations to

the data and thus need expensive exhaustive grid search via cross-

validation. Furthermore, it is unrealistic for researchers to manually

set �exible and diverse weights for millions of data. In practical

scenarios, di�erent data may have di�erent con�dence on esti-

mating users’ preference. Some unobserved feedback data may be

attributed to users’ preference, while others are the result of users’

limited awareness. Coarse-grained manual con�dence weights will

create empirical bias on estimating user’s preference.

Another problem in recommendation from implicit feedback

is learning e�ciency. Due to the lack of reliable negative feed-

back data, all the un-observed data need to be considered to learn

users’ preference [4]. However, this degrades the learning e�ciency
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Figure 1: SamWalker estimates data con�dence based on
user’s social relations. The left part of the �gure illustrates
a social network including implicit feedback expressed by
users. The consumed items (i.e. the items with positive feed-
back) are shown below the users. The right part shows our
inferred data con�dence.

because of the large number of unobserved data. For e�cient rec-

ommendation, most of the existing methods employ stochastic

gradient descent solvers and corresponding data sampling strate-

gies (e.g.uniform, item popularity-based). However, in real world,

users typically are only aware of a relatively small fraction of the

potential items [31]. In such cases, existing samplers usually select

uninformative data with low con�dence weight in which the user

just does not know the item rather than dislikes it. This will a�ect

the convergence and recommendation performance of the methods.

To deal with these problems, we propose a novel recommen-

dation method SamWalker that leverages social information to

simultaneously learn the personalized data con�dence and draw in-

formative training instances. With the development of online social

websites, social relations have become amajor information resource

when users select items to consume [36]. Users usually get item

information from social friends (neighbors) [10] and their exposure
to items (i.e. whether a user knows the items) will inevitable be

dominated by their social contexts (i.e. whether their direct or indi-
rect social neighbors have consumed the items). Thus, users’ social

contexts can a�ect how users are exposed to the items and suggest

the con�dence of the data. It is consistent with our intuitions. Note

that there exists two reasons for negative feedback: unknown or

dislike. When an item is more popular among the user’s social

neighbors (e.g. the purple gem comparing with the green gem for

user U1 in Figure 1), the user is more likely to know the item and his

feedback is more attributed to his preference. Correspondingly, the

data will be more reliable in deriving user’s preference. To capture

this insight, as illustrated in Figure 1, SamWalker simulates item

information propagation along the social network and models indi-

vidual con�dence weights as a social context-aware function. By

iteratively learning transformation function and user’s preference

based on EXMF framework (exposure-based matrix factorization

[30]), SamWalker can adaptively specify di�erent weights to di�er-

ent data based on user’s social contexts.

Due to the large number of unobserved data, developing an e�-

cient informative sampling strategy is challenging. It is apparently

ine�cient to estimate and rank the current learned con�dence

weights for every data to select informative data. Instead, we pro-

pose an e�cient sampling strategy based on the random walk along

the social network. Intuitively, if our more and closer social friends

(neighbors) have consumed the item, we are more likely to know it

due to the information sharing in the social network. Our feedback

on this item can thus be attributed to our preference with more

con�dence and the corresponding user-item feedback data is more

informative. Consequently, we conduct personalized random walk

for each user to explore his local social contexts and pick out items

consumed by these close direct or indirect social neighbors. theoret-

ical analysis proves that the distribution of the proposed sampling

strategy is proportional to the data con�dence, which can reduce

the sampling variance and speed up gradient estimation.

It is worthwhile to highlight the following contributions:

• We propose a new recommendation method SamWalker that

adaptively learns the data con�dence based on users’ social

context.

• We propose an e�cient social-based sampling strategy to

draw informative training instances, which can both reduce

sampling variance and speed up gradient estimation.

• Our experimental evaluation on three well-known bench-

mark datasets demonstrates that SamWalker outperforms a

range of state-of-the-art methods and analyzes the superior-

ity of the proposed social-based sampling strategy.

The rest of this paper is organized as follows. We brie�y review

related works in section 2. We give the problem de�nition and back-

ground in section 3. The SamWalker model is introduced in section

4. The experimental results and discussions are presented in section

5. Finally, we conclude the paper and present some directions for

future work in section 6.

2 RELATEDWORK
In this section, we review the most related works from the following

three perspectives.

Recommendation from implicit feedback data. Due to the

lack of reliable negative feedback data, existing recommendation

methods for implicit feedback data treat all the un-observed data

as negative but downweight the con�dence of these data. However,

most of the existing methods manually assign coarse-grained con-

�dence weights. For example, the classic weighted factorization

matrix model (WMF) [22] and many neural-based collaborative

methods (e.g. CDAE[49], NCF[17]) used a simple heuristic where

all negative feedback data are equally downweighted vis-a-vis the

positive feedback data. [18] and [54] also manually assign the con-

�dence weights based on item popularity.

More recently, a new probabilistic model EXMF[30] was pro-

posed to incorporate user’s exposure to items into the CF methods.

When inferring user’s preference, EXMF can translate user’s ex-

posure as data con�dence. However, this method su�ers from the

e�ciency problem. We will analyze EXMF model in details in sec-

tion 3.

Some other pair-wise methods treat negative feedback data in

a di�erent way. Bayesian personalized ranking (BPR) [38] focuses

on the learning of relative preferences and aims at maximizing

the AUC objective function. They believe that user’s preference

on his consumed items is above un-consumed items. Similarly, the

weighted approximated ranking pairwise (WARP) loss proposed in

[48] optimizes Precision@K.



E�cientRecommendation. For e�cient recommendation,most

of the existing methods rely on the stochastic optimization and cor-

responding data sampling strategy. The most popular sampling

strategy is to draw un-observed feedback data uniformly, which

has been widely adopted by WMF [22], BPR [38],CDAE [49], NCF

[17], etc. Also, [54] and [19] further propose item popularity-based

and item-user co-bias sampling strategy to reduce sampling vari-

ance. A detailed comparison of these sampling methods is presented

in Table 4. However, as users are only exposed to very small fraction

of the items, these samplers usually select uninformative data to

estimate user’s preference, which a�ects convergence and recom-

mendation performance.

Some other sampling strategies are proposed to improve conver-

gence and accuracy from di�erent perspectives. [37, 55, 57] propose

subtle dynamic sampling strategies to oversample the “di�cult” neg-

ative examples in which the prediction is much di�erent from the

ground-truth. Although e�ective, sampling these “di�cult” data

for advanced preference model (e.g. BMF [19] or neural-based CF)

still su�er from low e�ciency [12]. Besides, the stochastic gradient

estimator is biased and may amplify the natural noise in user-item

feedback data [29]. [55] also proposes to draw positive data based

on random walk along user-item bipartite graph. Our sampling

strategy di�ers [55] in that we pay more attention to sample in-

formative negative data. [9] proposes several sampling strategies

to balance backward computation of the item-dependent neural

network and the user-item interaction function. [12] proposes an

e�ective sampling strategy by leveraging view data.

Also, [4, 18, 22] propose memoization strategies (e.g. ALS, eALS)

to speed up inference. However, these strategies are just suitable for

the model with K-separable property and L2 loss function (Guassian

likelihood). In fact, cross-entropy loss function (Bernoulli likeli-

hood) is more natural for the binary implicit feedback data and has

been validated better performance than L2 [26].

Social recommendation. Social information has been utilized

to improve recommendation performance in recent works. These

methods mainly assume that connected users will share similar

preference [2, 13, 14, 23, 41, 44, 52, 53, 60, 62]: Sorec [33], TrustMF

[51], PSLF [40], jointly factorize rating matrix and trust (social)

matrix by sharing a common latent user space; In [3, 7, 32, 42, 46, 50],

users’ feedback is considered as synthetic results of their preference

and social in�uence; [24, 46] utilize a social regularization term

to constrain user’s latent preference close to his trusted friends;

[47, 58] extend pair-wise BPR framework by further assuming that

for all items with negative feedback, a user would prefer the items

consumed by their friends over the rest.

Also, there are two recent works believe that comparing with

users’ preference, users’ exposure is more in�uenced by their social

friends (neighbors). Thus, [45] and [26] integrate social in�uence

on user’s exposure into the generative process of EXMF model.

[45] extends EXMF with social regularization (SERec-Re) and social

boosting (SERec-Bo). [26] integrates social knowledge in�uence and

social consumption in�uence into EXMFmodel. However, these two

methods need to infer n ×m parameters of user’s exposure, which

will su�er from over�tting and become the e�ciency bottleneck for

practise application. SamWalker employs social-based variational

posterior of user’s exposure, which requires much fewer parameters

and better captures heterogenous in�uence from both direct and

indirect social neighbors. Further, SamWalker uses a social-based

sampler to speed up inference and reduce sampling variance.

3 PRELIMINARIES
In this section, we �rst give the problem de�nition of implicit recom-

mendation. Then, we introduce exposure-basedmatrix factorization

(EXMF) [30] framework from variational perspective to provide

usual insight about the relation between user’s exposure and data

con�dence.

3.1 Problem de�nition
Suppose we have a recommender system with user setU (including

n users) and item set I (includingm items). The implicit feedback

data is represented as n ×m matrix X with entries xi j denoting
whether or not the user i has consumed the item j. Social informa-

tion indicates the connections between users, represented as n × n
matrix T . Also, Ti denotes the set of the connected social friends

(direct neighbors) of user i . The task of a recommender system can

be stated as follow: recommending items for each user that are

most likely to be consumed by him.

3.2 Exposure-based matrix factorization
(EXMF)

EXMF [30] directly incorporates user’s exposure into collaborative

�ltering. Firstly EXMF generates the latent variable ai j , which
indicates whether user i has been exposed to item j. Then, EXMF

models user’s consumption xi j based on ai j ,

ai j ∼ Bernoulli(ηi j ) (1)

(xi j |ai j = 1) ∼ Bernoulli(σ (u>i vj )) (2)

(xi j |ai j = 0) ∼ δ0 ≈ Bernoulli(ε) (3)

where δ0 denotes p(xi j = 0|ai j = 0) = 1; ηi j is the prior probability
of exposure. Here we relax function δ0 as Bernoulli(ε) to make

model more robust, where ε is a small constant (e.g. ε=0.001). When

ai j = 0, we have xi j ≈ 0, since the user does not know the item and

he can not consume it. When ai j = 1, when the user has learned the

item, he will decide whether or not to consume the item based on

his preference. Thus, xi j is modeled as the classic preference model
1

and factorized by the latent vectors ui and vj , which respectively

characterize the latent preferences of user i and latent attributes of

item j. To facilitate the description, here we collect the parameters

of the preference model as θ = {ui ,vj }i ∈U , j ∈I .

3.3 Analyses of EXMF from variational
perspective

The marginal likelihood of EXMF is composed of a sum over the

marginal likelihood of individual datapoint logp(X ) =
∑
i j
logp(xi j ),

which can be rewritten as:

logp(xi j ) = Eq [logp(xi j ,ai j ) − logq(ai j |xi j )]

+ Eq [logp(ai j |xi j ) − logq(ai j |xi j )]

= L(θ,q;xi j ) + KL(q(ai j |xi j )| |p(ai j |xi j )) (4)

1
Here the preference model is slightly di�erent from the original model presented in

work [30] in that we employ Bernoulli likelihood instead of Gaussian likelihood on

xi j . In fact, Bernoulli likelihood is more natural for the binary variable [26].



where q(ai j |xi j ) is de�ned as an approximated variational posterior

of ai j . The second term is the KL divergence of the approximate vari-

ational posterior from the true posterior. Since the KL-divergence is

non-negative, the �rst term L(θ ,q;xi j ) is the evidence lower bound
on (ELBO) the margin likelihood. Thus, optimizing marginal likeli-

hood can be translated as optimizing the lower bound L(θ,q;xi j )
w.r.t. both the variational posterior and the preference parame-

ters θ . Classic variational methods [20] usually employ conjugate

variational distribution and individual variational parameters
2
, i.e.

q(ai j |xi j ) = Bernoulli(γi j ). For convenience we collect variational
parameters γi j for every user-item pairs (i, j) as matrix Y . Then, the
ELBO can be transferred into:

L(θ,Y ;X ) =
∑
i j

Eq [logp(xi j ,ai j ) − logq(ai j |xi j )]

=
∑
i j

γi j`(xi j ,σ (u
>
i vj )) +

∑
i j

д(γi j ) (5)

The EBLO is composed of the two terms, the �rst term is a weighted

cross-Entropy loss for the predicted preference, where `(a,b) =
aloд(b) + (1 − a)loд(1 − b). The second term is a loss function w.r.t

γi j :

д(γi j ) = (1 − γi j )`(xi j , ε) + `(γi j ,ηi j ) − `(γi j ,γi j ) (6)

Exposure probability as the data con�dence. From equation

(5), a good property is observed that the variational parameters

γi j , which characterize the probability that user i is exposed to

item j, act as the con�dence of the corresponding data to infer

the preference parameters θ (θ = {ui ,vj }i ∈U , j ∈I ). This is clear

by considering the following fact: when γi j becomes larger (or

smaller), the inferred user and item factors θ make more (or less)

contributions on the objective function. This �nding is consistent

with our intuitions. Only if the user has been exposed to the item,

he can decide whether or not to consume the items based on his

preference. Thus, the data with larger exposure is more reliable in

deriving user’s preference.

Weaknesses. However, although EXMF can adaptively derive

the con�dence of the data, we emphasize two latent weaknesses

of the EXMF model: (1) EXMF is costly in accounting for all un-

observed data (O(n ×m)) and is thus unrealistic for practical use.

Although some sampling strategies can be used to speed up the

algorithm, the gradient estimator exhibits high variance. Typically,

in real world large datasets, each user will only be exposed to or

be aware of a relatively small fraction of the potential items that

they could interact with. That is, the γi j of most data are small

and these data make limited contribution on updating parameter θ .
Existing coarse-grained sampling strategy will usually draw unin-

formative data with small γi j , which a�ects the convergence and

the recommended performance of the methods. (2) EXMF assumes

user-independent posteriors of user’s exposure. On the one hand,

the number of variational parameters γi j grows quickly with the

number of users and items (n ×m). This will su�er from serious

over�tting and become the e�ciency bottleneck for practise recom-

mender systems. On the other hand, social network enable e�ective

2
Note that the EM algorithm presented in [30] is a special case of the classic variational

inference.

information sharing [1, 10]. Users’ exposure to items will be in�u-

enced by their social contexts. Independent assumption of users’

exposure is not practical in real world.

Thus, we are interested in, and propose a solution to two related

problems:

(1) A social-based variational distribution of user’s exposure

that can both model the social in�uence between users and

employ fewer variational parameters to speed up inference

and alleviate over�tting.

(2) A sampling strategy that can draw informative training in-

stances to speed up gradient estimation and reduce sampling

variance.

4 SAMWALKER
For the purpose of solving the above problems, as illustrated in

Figure 2, we propose a new recommendation method SamWalker

that replaces individual variational parameter with a social context-

aware function: γi j = дφ (X ,T ), where φ are replaced variational

parameters. That is, we design an transformation function дφ that

maps the local social context of the user, i.e. whether his direct or

indirect social friends (neighbors) have consumed the item, into

the probability of user’s exposure to the item. It is reasonable since

users usually get item information from social network and their

exposure to items depend on their local social contexts. An idea

of modeling transformation function дφ is to iteratively simulate

the information spread via the social network. Similar to PageRank

algorithm [34], we initially set the label of user’s exposure according

to his consumption. Then, all users spread their item information to

their connected friends via the social network. The spread process

is repeated until a global stable state is achieved. Concretely, in each

step, users collect information from the connected social friends

(neighbors) and reconstruct their exposure as follows:

γ
(t+1)
i j = (1 − c)xi j +

∑
k ∈Ti

cφikγ
(t )
k j (7)

The parameter c (0 ≤ c ≤ 1) speci�es the relative contributions

from the social in�uence and the initial label. φik is de�ned as tie

strength, which balances the heterogenous in�uence from di�er-

ent neighborhoods (k ∈ Ti ) and meets

∑
k ∈Ti φik = 1. Overall,

SamWalker replaces γi j with a social context-aware function д
parameterized by φ, to which the equation (7) converges:

Y = дφ (X ,T ) ≡ lim

t→∞
Y (t ) = (I − cΦ)−1(1 − c)X (8)

where we collect variables γ
(t )
i j for every user-item pairs (i, j) as a

matrix Y (t )
. Also, we collect φik as a matrix Φ, in which Φi j = φi j

for connected user pairs and Φi j = 0 for others. As we can see from

equation (8), SamWalker replaces the posterior expectation of user’s

exposure with a weighted combination of the users’ consumption

in his social network. The weight matrix (I − cΦ)−1 is a graph or

di�usion kernel [59], which has been widely adopted to measure

nodes proximity in the network and depends on the tie strength

parameters φ for every social ties. Overall, SamWalker can capture

the heterogeneous social in�uence between users and reduce the

number of variational parameters from O(n ×m) to O(|E |), where
|E | denotes the number of ties. By iteratively learning the transfor-

mation function and user’s preference, SamWalker can adaptively



specify di�erent weights to di�erent data based on users’ social

contexts.

4.1 Informative Sampler based on personalized
random walk

As mentioned above, inferring user’s preference from implicit feed-

back data is time-consuming due to the massive volume of the

unobserved data. Thus, for e�cient recommendation, SamWalker

employs stochastic inference based on data sampling. That is, in

each iteration, we update the preference parameters θ based on

the estimated gradient from only a subset of the data. Note that

di�erent data may have di�erent con�dence weights. This makes

the data sampling strategy important because it determines which

data are used to update parameters and how often. Intuitively, the

informative data with larger con�dence γi j should be sampled with

larger probability, since these terms make more contribution to the

objective function. In fact, we have the following lemma:

Lemma 1. To evaluate the unbiased gradient of L w.r.t θ , the sam-
pling strategy with distribution pi j ∝ γi j can reduce sampling vari-
ance.

The proof are presented in appendix.

Also, the sampler with distribution pi j ∝ γi j can speed up gra-

dient estimation. As we can see from the following equation (9)

(here `i j as shorthand for `(xi j ,σ (u
T
i vj ))), when the data sampling

probability is proportional to the data con�dence (pi j = γi j/G),
the con�dence weights γi j can be absorbed into the sampling bias.

Thus, in each iteration the gradient estimator does not need to

calculate current learned con�dence weights γi j to scale down the

contribution from di�erent data, which saves much time.

∂L

∂θ
=

∑
i ∈U , j ∈I

γi j
∂`i j

∂θ
=

∑
i ∈U , j ∈I

pi j

G

∂`i j

∂θ
=Ep [

∑
(a,b)∈p

1

G

∂`ab
∂θ

] (9)

We simulate following equation and further propose following

random walk-based sampling strategy.

Y = (I − cΦ)−1(1 − c)X

= (1 + cΦ + (cΦ)2 + (cΦ)3 . . .)(1 − c)X (10)

For target user i , we perform the random walk from user i to
sample the informative feedback data of user i . At each step t of
random walk, we are at a certain user u. We have two options:

(1) With probability c , we do not continue the random walk. We

stay at user u and randomly (uniformly) select a portion of (Nu/β)
items that have been consumed by user u, where Nu denotes the

number of items consumed by user u. Then we add the feedback

data of user i on these selected items into sampled set S .
(2) With probability (1 − c), we continue our random walk. We

randomly select one of u’s connected friends v based on personal-

ized tie strength φuv and walk to v for the next walk step.

It is easy to check that the (i,v)-th element of matrix (cΦ)t (1−c)
is the probability of starting from source user i and terminating at

userv in step t . Further, the (i, j)-th element of matrix (cΦ)t (1−c)X
represents the sampled probability of the user-item feedback data

xi j in step t . Sum over the probability in di�erent step, we have the

… …

…

…
… …Conv.

Social

relations

Corresponding

convolutional layer

Conv.Conv.

Figure 2: A schematic view of proposed model SamWalker
(upper), the transformation function дφ (X ,T ) based on
multi-layer convolutions (bottom-left), and the convolu-
tional layer for the speci�c social network (bottom-right).

sampled probability of the data as follow:

P =
∞∑
t=0

(cΦ)t (1 − c)X/β ∝ Y (11)

which is proportional to the data con�dence. Overall, our sampling

strategy can e�ciently draw informative training instances to speed

up inference and reduce sampling variance.

In practice, we usually conduct α times random walk for each

user to achieve more reliable mini-batch stochastic optimization.

The paremeters α and β control the batch size. Note that there is a

chance for a single random walk to continue forever. In fact, we pay

more attention to user’s local social context and thus terminate the

random walk when we go very far from the source user (t > tm ).

Concretely, when t > tm , we walk to random user in the system

(uniformly) and generated sampled data as option (1).

4.2 Inference of the personalized tie strength φ
Chaney et al. [7] and Wang et al. [46] claim that di�erent social

ties may have di�erent in�uence strength. For example, we are

more likely to get information from our close friends than from our

acquaintances. Thus, the parameters φ of tie strength in transfor-

mation function tend to be diverse and is thus hard to be assigned

manually. To deal with this problem, SamWalker �ts transformation

function and learns its parameters φ from the data.

We achieve this by optimizing the lower bound of margin likeli-

hood (equation 5) w.r.t tie strength φi j based on gradient methods.

However, directly deriving gradient from transformation function

дφ (equation (8)) involves matrix inversion and su�ers from low

e�ciency. Alteratively, as illustrated in Figure 2, SamWalker itera-

tively simulates information spread as equation (7), and constructs

equivalent social-based convolutional neural network [28, 56] to in-

fer the personalized tie strength. In fact, using convolutional neural

network to model information spread in social network is natural:

The nodes in t-th layer can represent users’ exposure γ
(t )
i j in t-th

iteration. The forward process from layer t to t + 1 models t-th



Algorithm 1 Inference of SamWalker

1: Initialize parameters randomly;

2: while not converge do
3: Sample a set of data S based on the random walk as mentioned in

subsection 4.1.

4: Update parameters θ of the preference model based on the estimated

gradient from the sampled data (equation (9)).

5: randomly select a portion of NSI items.

6: update personalized tie strength φ based on backward propagation

along the neural network for the selected items.

7: end while

information spread. That is, nodes/users collect the information

from their social connected friends (neighbors) and generate new

representation in t + 1 layer:

γ
(t+1)
i j = ρ(

∑
k ∈Ni

cφikγ
(t )
k j + (1 − c)xi j ) (12)

where ρ(.) is an activation function. In SamWalker, we use identity

activation function ρ(x) = x . In fact, other activation function can

be employed for di�erent prorogation pattern (e.g. sigmoid func-

tion for Linear Threshold [11]). Further, attentive mechanism has

been employed to balance the social in�uence from di�erent social

friends (neighbors). Here we simply use independent attention and

reparameterize φik =
exp(wik )∑

k∈Ni
exp(wik )

using a Softmax transformation.

In fact, more sophisticated attentive network can be employed to

capture complex and context-aware tie strength [8, 21]. We will

leave it in the future work.

With above neural network, backward prorogation can be con-

ducted to infer tie strength φ, without requiring time-consuming

matrix inversion. Further, mini-batch-based stochastic gradient

methods can be employed to speed up the inference. That is, in

each step, we randomly (uniformly) select a portion of NSI items

and update tie strength based on users’ exposure on these selected

items. Overall, the inference of our SamWalker is presented in

Algorithm 1.

4.3 Discussion of the SamWalker
Global in�uence Vs. local in�uence. If a user has no connec-

tions with others, the method will face degeneration when esti-

mating user’s exposure or conducting random walk. To deal with

this problem, we borrow the idea from Pagerank and consider a

user may also get information from a random user. That is, when

estimating user’s exposure, users are assumed to link out to all

other users but with very weak common tie strength. Thus, we

revise equation (7) as follow:

γ
(t+1)
i j = (1 − c)Xi j + c(

∑
k ∈Ti

φikγ
(t )
k j +

φi0
n

∑
k ∈U

γ
(t )
k j ) (13)

where we introduce the in�uence from all other users to itera-

tively reconstruct user’s exposure. Also, the parameters φi0,φik
have been employed to balance the local social in�uence from con-

nected users and the global social in�uence from all other users (i.e.

φi0+
∑

k ∈Ti
φik = 1). From another perspective, the additional global

Social

relations

Corresponding

convolutional layer

Revised

convolutional layer

Avg. pooling

Figure 3: The revised convolutional layer for modeling both
local in�uence and global in�uence.

term can be considered as the mean priori of users’ exposure. As

claimed by [36], users’ selection behaviour is mainly driven by the

local social in�uence among friends while the global popularity

plays a supplementary role driving the behaviour only when there

is little local information for the user to refer to. Thus, On the one

hand, we introduce the global in�uence to pull user’s exposure

closer to the global average. On the other hand, users have their

personalized local social contexts and thus are exposed to diverse

item information. Correspondingly, local social in�uence term has

been introduced to push users’ exposure away from average and

towards diversity. Overall, we combine these two e�ects to better

capture user’s exposure.

Correspondingly, to let our sampling strategy adapt to the revised

data con�dence, we add random transition into random walk. That

is, in each step of random walk, we add another option (3): With

probability cφi0, we walk to another user (v ∈ U ) in the network

by random (uniformly) and continue the random walk on v .
Also, as illustrated in Figure 3, with additional pooling units,

global in�uence can be easily integrated into the social-based con-

volutional neural network to infer the tie strengthφi0,φik . Formally,

we revise equation (12) as:

γ̄
(t )
j =

1

n

∑
k ∈U

γ
(t )
k j

γ
(t+1)
i j = ρ(c(

∑
k ∈Ni

φikγ
(t )
k j + φi0γ̄

(t )
j ) + (1 − c)xi j ) (14)

ComplexityAnalysis. The computational time of the inference

of SamWalker consists of three parts: (1) In sampling, we need to

conductα times randomwalk for each user to get sampled data set S .
The time for sampling isO(αntm+ |S |), wheren denotes the number

of users in the system, tm denotes the max depth of random walk

and |S | denotes the number of data in the set S . (2) When inferring

the preference parameters θ , we just estimate loss and gradient for

the sampled data based on equation (9). The time to update these

parameters is O(|S |d). (3) We infer the tie strength φ based on the

gradient back propagation along the neural network for the selected

NSI items. The complexity for this part is O(NSI |E |). Hence, the
overall computational complexity is O(αntm + |S |d + NSI |E |). In
practise, we usually let |S | be �ve times as large as the number

of observed data and let the number of selected items NSI be 100.

Thus, our algorithm is e�cient on sparse implicit feedback data.



Table 1: Statistics of three datasets.

Datasets #Users #Items #Links #User-item interactions

LastFM 1,892 4,489 25,434 52,668

Ciao 5,298 19,301 106,640 138,840

Epinions 21,290 34,075 414,549 333,916

Table 2: The characteristics of the compared methods.

Methods Social?

Exposure

-based?
Sample? Complexity

WMF(ALS) \ \ \ O ((n +m)d3)

BPR \ \
√

O ((n +m + |S |)d )
SBPR

√
\

√
O ((n +m + |S |)d )

SPF

√
\ \ O ((n +m))d

CDAE \ \
√

O ((n +m + |S |)d )
EXMF \

√
\ O (nmd )

SERec-Bo

√ √
\ O (nmd )

SoEXBMF

√ √
\ O (nmd2)

SamWalker

√ √ √
O (αntm + |S |d + NSI |E |)

5 EXPERIMENTS AND ANALYSES
In this section, we conduct experiments to evaluate the running time

and the recommendation quality of SamWalker. Our experiments

are intended to address the following questions:

(Q1) Does SamWalker outperform state-of-the-art recommenda-

tion methods?

(Q2) How does the proposed social-based sampling strategy per-

form?

(Q3) Is it bene�cial to model the personalized tie strength? Is it

bene�cial to model the both local social in�uence and global

popularity in�uence?

(Q4) How does the parameter tm (the max depth of random walk)

a�ect the recommendation performance?

5.1 Experimental protocol
Datasets. Three datasets Epinions

3
, Ciao

4
, LastFM

5
are used in

our experiments. These datasets contain users’ feedback and social

relations. Speci�cally, the datasets Epinions and Ciao contain users’

ratings on movies, while the dataset LastFM contains users’ clicks

on music. The dataset statistics are presented in Table 1. Similar

to [18, 50], we preprocess the datasets so that all items have at

least three interactions and "binarize" user’s feedback into implicit

feedback. That is, as long as there exists some user-item interactions

(ratings or clicks), the corresponding implicit feedback is assigned

a value of 1. Also, we drop out items that have been consumed

by too many (larger than 100) or too few (smaller than 3) users to

moderate the popularity biases [5] in estimation. Grid search and

5-fold cross validation are used to �nd the best parameters. In our

experiments, we set ηi j = 0.1, α = 100, β = 20, c = 0.9, tm = 5. All

experiments are conducted on a server with 2 Intel E5-2620 CPUs

and 256G RAM
6
.

Compared methods.We compare SamWalker with following

baseline methods. Table 2 concludes the characteristics of them.

3
http://www.trustlet.org/epinions

4
http://www.cse.msu.edu/~tangjili/trust

5
https://grouplens.org/datasets/hetrec-2011/

6
Source code will be available at https://github.com/jiawei-chen/Samwalker

• WMF(ALS) [22, 35]: The classic weighted matrix factoriza-

tion model for implicit feedback data. The corresponding

ALS-based [22] algorithm can reduce inference complexity.

• BPR [38]: The classic pair-wise method for recommendation,

coupled with matrix factorization. For e�cient recommen-

dation, BPR employs uniform sampling strategy to draw the

training instances.

• SBPR[58]: SBPR integrates social information into BPR by

assuming that the items consumed by connected friends are

ranked higher than those not.

• SPF [7]: A social recommendation model that incorporates

social in�uence with users’ latent preference based on pois-

son factorization.

• CDAE [49]: The advanced recommendationmethod based on

Auto-Encoders, which is a generalization of WMF with more

�exible components. However, e�cient ALS-based inference

algorithm are no longer suitable. Thus CDAE employs uni-

form sampling strategy to draw the training instances.

• EXMF [30]: A probabilistic model that directly incorporates

user’s exposure to items into traditional matrix factorization.

EXMF does not utilize social information and chooses an

item-dependent prior of user’s exposure.

• SERec-Bo[45]: A probabilistic model that extends the EXMF

model with social in�uence on user’s exposure. Note that in

[45] the authors reported that the performance of SERec-Bo

is consistently better than their other model SERec-Re. Thus,

here we choose SERec-Bo as a comparison.

• SoEXBMF [26]: A probabilistic model that further extends

the EXMF model with both social knowledge in�uence and

social consumption in�uence on user’s exposure.

EvaluationMetrics.We adopt four well-knownmetrics Recall@K

(Rec@K), Precision@K (Pre@K), Normalized Discounted Cumula-

tive Gain (NDCG) and Mean Reciprocal Rank (MRR) to evaluate

recommendation performance: Recall@K (Rec@K) quanti�es the

fraction of consumed items that are in the top-K ranking list sorted

by their estimated rankings; Precision@K (Pre@K) measures the

fraction of the top-K items that are indeed consumed by the user;

NDCG and MRR evaluate ranking performance of the methods,

which can be interpreted as the ease of �nding all consumed items,

as higher numbers indicate the consumed items are higher in the

list. Refer to [47] for more details about these metrics.

5.2 Performance comparison (Q1)
Table 3 presents the performance of the compared methods in terms

of three evaluation metrics. The boldface font denotes the winner in

that column. Overall, with few exceptions, SamWalker outperforms

all compared methods on all datasets for all metrics. For the sake of

clarity, the last two rows of Table 3 also show the relative improve-

ments achieved by SamWalker over the e�cient baselines (Impv-e)

and over all baselines (Impv-a) respectively. The improvement of

SamWalker over the e�cient baselines is apparent. Especially on the

large dataset Epinions, the improvement is 56.0%, 64.2%,5.5%,40.9%

in terms of Pre@5, Rec@5, NDCG, MRR respectively. The improve-

ment of SamWalker over these e�cient baselines can be attributed

to two aspects: (1) In the real world, users have personalized social

http://www.trustlet.org/epinions
http://www.cse.msu.edu/~tangjili/trust
https://grouplens.org/datasets/hetrec-2011/ 
https://github.com/jiawei-chen/Samwalker


Table 3: The performance metrics of the compared methods. The boldface font denotes the winner in that column. The row
‘Impv-e’ indicates the relative performance gain of our SamWalker compared to the best results among these e�cient baselines
including WMF(ALS), BPR, CDAE, SPF, SBPR. The row ‘Impv-a’ indicates the relative performance gain of our SamWalker
compared to the best results among all the baselines.

Methods

LastFM Ciao Epinions

Pre@5 Rec@5 NDCG MRR Pre@5 Rec@5 NDCG MRR Pre@5 Rec@5 NDCG MRR

E�cient

WMF(ALS) 0.0928 0.0841 0.3364 0.3552 0.0172 0.0123 0.1757 0.0738 0.0095 0.0087 0.1522 0.0446

BPR 0.1004 0.0888 0.3485 0.3704 0.0144 0.0125 0.1759 0.0649 0.0087 0.0096 0.1541 0.0406

SBPR 0.0956 0.0851 0.3405 0.3556 0.0156 0.0124 0.1774 0.0678 0.0088 0.0089 0.1542 0.0411

SPF 0.0714 0.0622 0.3132 0.2909 0.0081 0.0061 0.1603 0.0379 0.0052 0.0063 0.1464 0.0276

CDAE 0.1008 0.0890 0.3509 0.3784 0.0144 0.0116 0.1778 0.0647 0.0092 0.0112 0.1570 0.0423

Ine�cient

EXMF 0.0957 0.0859 0.3477 0.3665 0.0095 0.0105 0.1747 0.0485 0.0051 0.0082 0.1513 0.0275

SERec-Bo 0.1018 0.0907 0.3509 0.3787 0.0118 0.0124 0.1770 0.0532 0.0073 0.0101 0.1577 0.0365

SoEXBMF 0.1108 0.1014 0.3617 0.4140 0.0181 0.0152 0.1827 0.0775 0.0120 0.0130 0.1612 0.0537

Proposed

SamWalker 0.1177 0.1072 0.3634 0.4250 0.0182 0.0167 0.1811 0.0775 0.0149 0.0184 0.1656 0.0628
Impv-e% 16.8% 20.4% 3.6% 12.3% 5.9% 34.0% 1.9% 5.0% 56.0% 64.2% 5.5% 40.9%

Impv-a% 6.2% 5.7% 0.5% 2.7% 0.2% 10.4% -0.8% 0.0% 23.9% 41.1% 2.7% 16.9%
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Figure 4: NDCG for each method in di�erent steps versus time

contexts and thus are exposed to diverse information. Correspond-

ingly, data have diverse con�dence for estimating user’s preference.

That is, some un-observed feedback are more likely attributed to

user’s preference while others are the results of users’ awareness.

By adaptively �tting �ne-grained data con�dence weights based on

users’ social contexts, SamWalker achieves better performance than

those baselines with manually coarse-grained con�dence weights.

(2) Instead of employing pre-de�ned coarse-grained sampling meth-

ods, SamWalker employs random walk-based sampler to adaptively

draw informative data, which can reduce sampling variance and

achieve better performance. We also conduct speci�c experiments

for di�erent samplers in subsection 5.3 to validate this point.

Also, even although SamWalker employs stochastic optimization

to reduce time complexity, SamWalker still beat these exposure-

based methods (EXMF, SERec-Bo, SoEXBMF). This result validate

the e�ectiveness of employing social-based variational posterior

of user’s exposure, which models the heterogenous in�uence from

both direct and indirect social friends (neighbors). Although SoEXBMF

can also capture such in�uence, it costs much more running time

and requires pre-de�ned community distribution. In fact, accurate

community distribution is not easy to get, which a�ects the perfor-

mance of SoEXBMF model.

Runtime vs. NDCG. Figure 4 depicts running time (X-axis)

vs. NDCG (Y-axis) of the nine compared recommendation meth-

ods. As we can see, generally, SamWalker achieves best perfor-

mance. The powerful competitor is CDAE, which models user’s

preference based on collaborative auto-encoder. Although CDAE

has better NDCG than SamWalker at �rst, SamWalker overtakes

CDAE soon and before CDAE gets convergence. Especially on

large dataset Epinions, SamWalker outperforms CDAE almost in

all time and achieves much better performance than CDAE when

they get convergence. Also, we observe that these exposure-based

methods (EXMF,SERec,SoEXBMF) achieve good performance but

cost a lot of time. Although these methods can learn the personal-

ized con�dence of the data, they need infer n ×m parameters of

user’s exposure, which will su�er from low e�ciency and over-

�tting. By employing social-based posterior structure of exposure

and random walk-based sampler, our method SamWalker can beat

EXMF,SERec,SoEXBMF in both running time and recommendation

performance.

5.3 Performance of the di�erent samplers (Q2)
In this subsection, we compare our sampler with other sampling

strategies including: (1) S-allunion, the uniform sampling strategy;

(2) S-balunion [19, 35], which samples un-observed data (zeros) and

observed data (ones) with equal probability to deal with unbalance



Table 4: Average empirical variance of the estimated gradients using di�erent sampling strategies. Here X (1), X (0) denote the
number of ones or zeros in the matrix X . Similarly, r (1)i , r (0)i denote the number of ones or zeros in the i-th row of matrix X and

c
(1)

j , c(0)j denote the number of ones or zeros in the j-th column of matrix X .

Sampling

strategy

Distribution

Average Variance

Batchsize=5 |X (1) | Batchsize= |X (1) |

50 It. 100 It. 500 It. 50 It. 100 It. 500 It.

S-allunion pi j = 1/(n ×m) 2.3793 2.5640 2.6663 11.8566 13.2071 13.2475

S-balunion pi j = 1/(2 |X (xi j ) |) 0.4154 0.4941 0.5368 2.0834 2.4732 2.6779

S-itempop pi j = I [xi j = 1]/(2 |X (1) |) + I [xi j = 0]c (1)j /(2
∑

1≤b≤m
c (1)b ) 0.1720 0.1938 0.2190 0.8702 0.9890 1.1052

S-cobias pi j = r
(1−xi j )
i c

(1−xi j )
j /(2

∑
1≤a≤n

∑
1≤b≤m

I [xab = xi j ]r
(1−xi j )
a c

(1−xi j )
b ) 0.1617 0.1874 0.2031 0.8074 0.9663 1.0647

Random Walk pi j ∝ γi j 0.1358 0.1464 0.1510 0.6469 0.6977 0.7038

data problem; (3) S-itempop [54], which samples data based on

item popularity; (4) S-cobias [19], whose probability of sampling

a un-observed data (zero) at location (i, j) is proportional to the

number of ones in the i-th row (the number of user’s consumption)

and the number of zeros in the j-th colunm (item popularity). Also,

an equivalent bias is introduced for the observed data. The detailed

distributions of these sampling strategies are presented in Table 4.

Variance. We �rst empirically compare the variance of the esti-

mated gradient of our objective w.r.t θ by using di�erent sampling

strategy. To do this, we train our model for 50,100 or 500 epochs on

dataset LastFM. After training, we generate mini-batch with vari-

ous sampling strategy and calculate un-biased estimated gradients

of our objective w.r.t θ . We repeat this proceeding for 1000 times

and calculate the variance of the estimated gradients for di�erent

sampling strategy. The �nal results presented in Table 4 are aver-

aged over various preference parameters. Table 4 shows that our

random walk-based sampling strategy achieves the lowest average

variance among various samplers for all conditions. This result

is coincide with our theory analysis in section 4.1. Our sampler,

whose sampling probability is proportional to the data con�dence,

can indeed reduce the sampling variance. Also, we observe the

following interesting phenomenon: With more training epoches,

the variance will become larger, not smaller as usual. It may be

explained as follow: SamWalker models the diverse data con�dence

and the personalized tie strength. At �rst, SamWalker keeps relative

similar data con�dence. With training proceeding, driven by the

data, the con�dence weights and the tie strength in SamWalker

exhibit more and more heterogeneity. Thus, the variance of the

estimated gradients will become larger.

Performance. Figure 5 presents the NDCG of SamWalker on

dataset LastFM with di�erent sampling strategies versus the num-

ber of iteration and running time. As we can see, our adaptive

random walk-based sampler performs better than others in all con-

vergence, speed and recommended performance. One reason is that

our sampler has low variance, as presented in Table 4. Another

reason is that in our sampler the con�dence weights γi j are ab-

sorbed into the bias of the sampling distribution. Thus, the gradient

estimator does not need to calculate γi j in each iteration to scale

down the contribution from the di�erent data, which saves much

time.

5.4 Heterogenous social in�uence (Q3)
To show the e�ect of modeling heterogenous social in�uence, we

compare SamWalker with its three special case: (1) SamWalker-ho,

the special case of SamWalker with homogeneous tie strength. (2)

SamWalker-g (item-pop): the special case which leave out heteroge-

nous local social in�uence and models user’s exposure just based on

item popularity. (3) SamWalker-l: the special case which leaves out

global in�uence. The performance of these special cases comparing

with SamWalker is presented in Figure 6.

Personalized tie strength. As shown in Figure 6, SamWalker

with personalized tie strength consistently achieves better perfor-

mance than its special case SamWalker-ho with the homogeneous

tie strength in all three datasets. These results support our intu-

ition that di�erent ties may have di�erent in�uence strength. For

example, the items consumed by our close friends that have high

frequency of interactions, are more likely to come to our attention

than those items consumed by our acquaintances.

Global in�uence Vs. local in�uence. Figure 6 also shows

that SamWalker outperforms its special cases SamWalker-g and

SamWalker-l. The result validates our point that user’s exposure

will be a�ected by both local social in�uence and global popu-

larity in�uence. Especially, as claimed by some sociologic related

works [36], user’s social relations have become a major informa-

tion resource when he select items to consume. Thus, we observe

the apparent improvement of SamWalker over the special case

SamWalker-g (item-pop) which leaves out local social in�uence.

5.5 E�ect of parameter tm (Q4)
It will be interesting to explore how parameter tm a�ects the per-

formance of SamWalker, where tm indicates the max depth of the

random walk. As we can see from Figure 7, as tm become larger,

with few exception, the performance will become better �rst. The

reason is that the information about items propagates along the

social network. User’s exposure will also be in�uenced by his high

order neighbors. However, when tm surpasses a threshold (tm > 5),

the performance becomes una�ected or even worse with further in-

crease of tm . In fact, based on the idea of "six-degrees of separation

[43]", the random walk with length 5 can visit most of the nodes

in the social network. Too deep random walk will not bring more

usual information and sometimes bring some noises.
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Figure 5: NDCG for di�erent sampling strategy versus the
number of iterations and running time
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Figure 6: Performance comparison of SamWalker with its
three special cases
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Figure 7: Performance comparison with varying tm

6 CONCLUSIONS
In this paper, we present a novel recommendationmethod SamWalker

that leverages social information to simultaneously learn the per-

sonalized data con�dence and draw informative training instances.

On the one hand, SamWalker models the posterior of user’s ex-

posure with a social context-aware function, which can reduce

the number of learned parameters and adaptively specify di�er-

ent con�dence weights to di�erent data. On the other hand, we

propose a personalized random walker-based sampling strategy

to draw informative training instances to speed up inference and

reduce sampling variance. The personalized transition probability

(tie strength) can be inferred e�ciently based on our attentive neu-

ral network. The experimental results on three real-world datasets

demonstrate the superiority of SamWalker over existing methods.

One interesting direction for future work is to explore dynamic

exposure-based recommendation. In the real world, users’ prefer-

ence, exposure and relations may evolve over time. Further, we did

not examine other attentive structure when modeling tie strength.

It will be also interesting to develop more complex attentive model

and explore context-aware social in�uence.
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A PROOF OF LEMMA 1
Given the con�dence weights γi j , we have the following un-biased

gradient estimator of the objection (equation 5) based on the speci�c

sampler pi j :

∇θL =
∑

i ∈U , j ∈I
γi j∇θ `i j =Ep [

nm

|S |

∑
a,b ∈p

γab∇θ `ab
pab

] (15)

where `i j is shorthand for `(xi j ,σ (u
T
i vj )) and |S | denotes mini-

batch size. Then, we have following variance of the gradient esti-

mator:

Var(a,b)∼p [
nm

|S |

∑
a,b ∈p

γab∇θ `ab
pab

]

=
n2m2

|S |
Var(a,b)∼p [

γab∇θ `ab
pab

]

=
n2m2

|S |
(Ep [(

γab∇θ `ab
pab

)2] − Ep
2[
γab∇θ `ab

pab
])

=
n2m2

|S |
Ep [(

γ 2ab
p2ab

∇2

θ `ab ] − (
∑

i ∈U , j ∈I
γi j∇θ `ab )

2
(16)

It is untractable to �nd optimized pi j based on equation (16) due

to the unknown of the terms ∇2

θ `ab . But we can derive the tight

upper-bound of the variance based on Cauchy inequality as follow:

Var(a,b)∼p [
nm

|S |

∑
a,b ∈p

γab∇θ `ab
pab

]

=
n2m2

|S |
Ep [(

γ 2ab
p2ab

∇2

θ `ab ] − (
∑

i ∈U , j ∈I
γi j∇θ `ab )

2

≤
n2m2

|S |

∑
i j

γ 2i j

pi j
× Ep,`ab [∇

2

θ `ab ] − (
∑

i ∈U , j ∈I
γi j∇θ `ab )

2
(17)

Also, we can �nd the minimum of

∑
i

γ 2

i j
pi j as follow:∑

i

γ 2i j

pi j
=
∑
i

γ 2i j

pi j

∑
i
pi j

≥ (
∑
i

γi j
√
pi j

√
pi j )

2 = (
∑
i
γi j )

2
(18)

The equation holds if and only if pi j ∝ γi j . Now, the sampling

strategy has the lowest upper-bound of the variance.
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