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Popularity Bias Is Not Always Evil: Disentangling
Benign and Harmful Bias for Recommendation

Zihao Zhao, Jiawei Chen, Sheng Zhou, Xiangnan He, Xuezhi Cao, Fuzheng Zhang, Wei Wu

Abstract—Recommender system usually suffers from severe popularity bias — the collected interaction data usually exhibits quite
imbalanced or even long-tailed distribution over items. Such skewed distribution may result from the users’ conformity to the group,
which deviates from reflecting users’ true preference. Existing efforts for tackling this issue mainly focus on completely eliminating
popularity bias. However, we argue that not all popularity bias is evil. Popularity bias not only results from conformity but also item
quality, which is usually ignored by existing methods. Some items exhibit higher popularity as they have intrinsic better property. Blindly
removing the popularity bias would lose such important signal, and further deteriorate model performance. To sufficiently exploit such
important information for recommendation, it is essential to disentangle the benign popularity bias caused by item quality from the
harmful popularity bias caused by conformity.
Although important, it is quite challenging as we lack an explicit signal to differentiate the two factors of popularity bias. In this paper,
we propose to leverage temporal information as the two factors exhibit quite different patterns along the time: item quality revealing
item inherent property is stable and static while conformity that depends on items’ recent clicks is highly time-sensitive.
Correspondingly, we further propose a novel Time-aware DisEntangled framework (TIDE), where a click is generated from three
components namely the static item quality, the dynamic conformity effect, as well as the user-item matching score returned by any
recommendation model. Lastly, we conduct interventional inference so that the recommendation can benefit from the benign popularity
bias while circumvent the harmful one. Extensive experiments on four real-world datasets demonstrated the effectiveness of TIDE.

Index Terms—Recommendation, Popularity Bias, Conformity, Item Quality

✦

1 INTRODUCTION

Recent years have witnessed flourishing publications
on recommendation, most of which aim at inventing ma-
chine learning models to fit users’ historical behavior data
[1]. However, the observation data usually exhibits severe
popularity bias, i.e., the distribution over items is quite im-
balanced and even long-tailed. Such skewed distribution
may be caused by the users’ conformity, deviating from
reflecting users’ true preference. As a crucial factor for users’
decision-making, conformity describes the tendency that
user behaves following the group. In a typical recommender
system, a user may click an item simply because he finds
the item clicked by many other users, rather than based
on his own judgement. As a result, recommendation model
trained on such biased data would yield unexpected results,
e.g., capturing skewed user preference and amplifying the
long-tail effect. Given the wide existence of popularity bias
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and its negative impact on recommendation, we cannot
emphasize too much the importance of tackling popularity
bias.

Existing efforts mainly focus on entirely eliminating
popularity bias to recover true user preference. However,
we argue that not all popularity bias is harmful. Besides
conformity effect, the uneven item distribution can also
be attributed to the diversity of item quality. For example,
some items exhibit higher popularity as they have intrinsic
better properties, e.g., attractive story, harmonious music
and professional actors for a typical movie. Blindly remov-
ing the popularity bias would lose such important signal,
making the model fail to differentiate superb items that
deserve more opportunities to be recommended. Therefore,
we arrive at a dilemma: eliminating popularity bias would
lose important quality signal, while maintaining popularity
bias would suffer undesirable conformity effect. Now a
question is raised: is there a solution that enjoys the merit of
the popularity bias while circumvents its bad effect? To achieve
this goal, it is essential to disentangle the harmful popularity
bias caused by the conformity from the benign one caused
by the item quality.

Although important, this problem has been under ex-
plored in the literature. The main challenge is the lack of
explicit signals for disentanglement. Since we only have
access to item popularity scores, which do not tell what
factor causes this result. To deal with this problem, we
propose to leverage the temporal information in differen-
tiating the benign and harmful factors, as they exhibit quite
different patterns along time: item quality which reveals
item intrinsic property is stable and static, while conformity
that depends on the number of recent clicks is highly time-



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

sensitive. We also conduct empirical analyses on real-world
datasets to validate this point, with making the following
two interesting observations: (1) The more popular an item
is, the larger average rating value the item tends to acquire.
This observation reveals the existence of benign popularity
bias — items with higher popularity usually suggest better
quality and would receive more praise. (2) From the temporal
view, for a large proportion of items, the rating value exhibits
negative correlation with the item popularity at that time. This
observation reveals temporal dynamic of harmful popular-
ity bias — conformity exerts varying negative impact on
users’ behaviors with time going by.

Based on the above insights, we propose a Time-aware
DisEntangled framework (TIDE) for tackling popularity
bias. We resort to the causal graph and assume click data
is generated from three different components: (1) a time-
invariant module that captures the quality of the item; (2) a
temporal dynamic module that encodes the conformity ef-
fect by scrutinizing the number and time of recent clicks on
the item; (3) a normal recommendation model that estimates
user interest matching on the item. Such disentangled model
provides opportunity to make better recommendation —
inheriting the benign components while circumventing the
harmful ones. Towards this end, during the inference stage,
we conduct causal intervention on the conformity module
to make the prediction beneficial from the item quality
and interest matching score while immune to the harmful
conformity effect.

Lastly, in terms of leveraging popularity bias in recom-
mendation, the most relevant work is the recently proposed
PDA [2]. However, we argue that directly injecting (pre-
dicted) item popularity score into prediction is insufficient
for satisfactory recommendation as the harmful conformity
effect is also injected. Distinct from PDA, our TIDE distills
the benign popularity bias in prediction and yields signifi-
cant empirical improvement.

In a nutshell, this work makes the following main con-
tributions:

• To the best of our knowledge, this is the first work
to study the problem of disentangling the benign
popularity bias caused by item popularity from the
harmful popularity bias caused by conformity in
recommendation.

• We propose a novel time-aware disentangled frame-
work TIDE for tackling popularity bias in recom-
mendation. TIDE performs disentangled training by
leveraging temporal information while resorts to
intervention to block the harmful conformity effect
during inference stage.

• Extensive experiments on four well-known bench-
mark datasets demonstrate the superiority of the
proposed method over a range of state-of-the-arts.
We will release our source code to facilitate future
research.

The rest of this paper is organized as follows. We for-
mulate the task and empirically explore popularity bias
in section 2. We further present our proposed TIDE in
section 3. The experimental results are presented in section
4. We briefly review related works in section 5. Finally, we

conclude the paper and present some directions for future
work in section 6.

2 PRELIMINARIES

In this section, we formulate the task and explore popularity
bias on real-world datasets.

2.1 Problem Definition
We use uppercase character (e.g., U ) to denote a random
variable and lowercase character (e.g., u) to denote its spe-
cific value. We use characters in calligraphic font (e.g., U )
to represent the sample space of the corresponding random
variable.

Suppose we have a recommender system with a user
set U and an item set I . Let u (or i) denote a user (or an
item) in U (or I). Let D denote the historical user behavior
data, which was sequentially collected before the time T
and notated as a set of triples, i.e.,D = {(uk, ik, tk)}1≤k≤|D|,
where the triple (uk, ik, tk) denotes the user uk has clicked
the item ik at the time tk. For convenience, we collect
users’ feedback on the specific item i before time t as
Dt

i = {(ul, il, tl) ∈ D|il = i, tl < t}. Also, we define the
popularity pi of the item i as the number of observed inter-
actions on i, i.e., pi = |DT

i |. The task of a recommendation
system can be stated as follows: learning a recommendation
model from D so that it can capture user preference and
make a high-quality recommendation.

Popularity Bias, which denotes the uneven (usually long-
tailed) distribution over the interaction frequency of items,
is common in recommender systems. There are two factors
resulting in popularity bias: (1) item quality, revealing the
inherent excellence of items, which is benign; (2) conformity
effect, describing a user tends to behave towards group
norms while deviating from her own preference, which is
harmful. This paper aims at disentangling the two factors
such that the recommendation can benefit from the benign
factor while circumvent the harmful one.

2.2 Empirical Analyses of Popularity Bias
In this subsection, to reveal the existence of the two factors
and their properties, we conducted empirical analyses on
real-world recommendation datasets including Amazon1,
Ciao2, Douban3 and Movielens4. Besides click information,
these datasets also contain users’ ratings on their clicked
items, which provide ground truth label of their preference.
A larger rating value suggests the user is more satisfied
with the item. Two statistical analyses have been conducted:
(1) We first explore the correlation between item popularity
and their average ratings. We divide items into 30 groups
according to their popularity pi (where we segment pop-
ularity interval uniformly). We then calculate the average
ratings of items in each group. The result on a typical dataset
Douban-Movie is presented in Figure 1(a). We also report

1. https://jmcauley.ucsd.edu/data/amazon/
2. https://www.cse.msu.edu/∼tangjili/datasetcode/truststudy.htm
3. https://github.com/DeepGraphLearning/

RecommenderSystems/blob/master/socialRec/README.md#
douban-data

4. http://files.grouplens.org/datasets/movielens/

https://jmcauley.ucsd.edu/data/amazon/
https://www.cse.msu.edu/~tangjili/datasetcode/truststudy.htm
https://github.com/DeepGraphLearning/RecommenderSystems/blob/master/socialRec/README.md#douban-data
https://github.com/DeepGraphLearning/RecommenderSystems/blob/master/socialRec/README.md#douban-data
https://github.com/DeepGraphLearning/RecommenderSystems/blob/master/socialRec/README.md#douban-data
http://files.grouplens.org/datasets/movielens/
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(a) Average ratings with popularity on Douban-Movie
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(b) Correlation Coefficient on various datasets

Fig. 1. We divide items into 30 groups according to their popularity and then calculate average rating values of items in each group. The left subplot
(a) shows the relation of average rating values with their popularity on Douban-Movie. The right subplot (b) presents the Correlation Coefficient
between average ratings and popularity on various datasets.

the Pearson Correlation Coefficient [3] between the average
rating and popularity in terms of groups on various datasets
in Figure 1(b). (2) We then explore the temporal dynamic of
popularity bias. For each item, we calculate the Pearson Cor-
relation Coefficient between the rating value and the time-
aware instant popularity at that time, where instant popularity
of item i at time t is defined as the number of clicks on the
item during the past half year (i.e., |Dt

i | − |D
t−to
i |, in which

to denotes a period of half year5). The distribution of the
calculated coefficients over items on two typical datasets is
presented in Figure 2(a), 2(b). Here we filter out items with
less than 20 interactions and exclude not significant results
with p > 0.2. We also visualize the temporal evolution of the
instant popularity for five randomly-selected items (Figure
2(c)), as well as an example of the relation between the rating
value and the instant popularity (Figure 2(d)).

Two important observations are concluded from these
results.

Observation 1. The more popular an item is, the larger average
rating value the item tends to have.

Figure 1(b) demonstrates item average rating values
exhibit positive correlation with item popularity in a large
portion of datasets. This result suggests that popularity bias
is not always harmful. The higher popularity of some items
can be attributed to their better intrinsic quality, conse-
quently, these items are more likely to be favored by users.
Item popularity provides an important signal regarding
to item quality, which is profitable to boost recommenda-
tion performance. Nevertheless, item popularity can not be
directly leveraged in recommendation. Popularity would
also be affected by the conformity effect, deviating from

5. Here we simply choose half year for analyses, while the results in
terms of other to (e.g., 1 month, 3 months, 1 year, 3 years) are presented
in Appendix.

the quality. It can be seen from the severe fluctuation of
the curve in Figure 1(a). Also, popularity exhibits weakly-
positive or even negative correlation with average ratings in
a considerable portion of datasets as the effect of the item
quality is approached or even overrode by the conformity
effect. Thus, we need to disentangle the effects from the
two factors so that the recommendation can benefit from
such benign knowledge while circumvent the impact of the
harmful one.

Observation 2. From the temporal view, for a large proportion
of items, the rating value exhibits negative correlation with the
item temporal popularity at that time.

Figure 2(c), 2(d) demonstrates the dynamics of item
instant popularity that conformity effect depends on. Be-
sides, we observe that, when the instant popularity becomes
larger, when the conformity exerts larger impact on user
behavior, user’s behavior deviates from his own preference
to a large extent. Thus we can see the negative correlation
between average ratings and instant popularity (Figure 2(a),
2(b)). This observation reveals the temporal dynamics of
harmful popularity bias and motivates us to leverage tem-
poral information in disentanglement to remove the harmful
effect.

Based on above analyses, we make the following hypoth-
esis, which lays foundation for our proposed method:

Hypothesis 1. Popularity bias is mainly caused by both con-
formity effect and diverse item quality. Item quality that reveals
item intrinsic property is stable and static, while conformity that
depends on recent clicks is highly time-sensitive.

3 TIME-AWARE DISENTANGLED FRAMEWORK

In this section, we present our time-aware disentangled
framework (TIDE) for tackling popularity bias.
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(a) Coefficient distribution on the dataset Douban-Movie.
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(b) Coefficient distribution on the dataset Amazon-Music.

������� ������� ������� ������
 ������� ������� ���	���
���

�

���

���

���

���

��
���

��
��

��
��

��
���

(c) Temporal evolving of the instant popularity for five
randomly-selected items.
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(d) The rating value with the instant popularity for an exemplified
item. For better visualization, here we scatter the average ratings
occurred within a week. Also, we plot a fitting curve for the rating
value.

Fig. 2. We calculate the correlation coefficient between the rating value and the instant popularity at that time for each item, where instant popularity
denotes the number of clicks on the item during the past half year. The subplots (a) and (b) illustrate the distribution of the calculated coefficient
over items on two typical datasets; The subplot (c) illustrates the temporal evolving of the instant popularity for five randomly-selected items on
Douban-Movie; The subplot (d) visualizes the relation of the rating value with the instant popularity for an exemplified item.

(a) Causal graph of our TIDE. (b) Performing intervention
on C during inference stage

Fig. 3. The subplot (a) illustrates causal graph of TIDE while the subplot
(b) illustrates how we conduct interventional inference on TIDE.

3.1 Disentangled Learning

TIDE resorts to a causal graph as shown in Figure 3(a),
consisting of seven types of nodes: (1) U : user; (2) I : item;
(3) t: time; (4) C : conformity effect; (5) Q: item quality; (6)

M : matching scores; (7) Y : prediction on user behavior.
TIDE assumes an observed click is generated from the

following three disentangled components:
(1) I → Q → Y : This link denotes the effect of item

quality on user behavior. An item with higher quality is
more likely to be favored by a user. Here we simply use
a time-irrelevant item-specific variable qi for each item i to
capture its inherent quality.

(2) (I, t) → C → Y : These links represent the time-
aware conformity effect on user behavior. As suggested in
Hypothesis 1, the impact of conformity not only depends
on the time point t of this interaction, but also on the time
and the number of past interactions on the item i. As such,
we formulate the following parameterized function gβ(·) to
estimate the strength of conformity effect of item i at time t:

cti = gβ(t,Dt
i) = βi

∑
(ul,il,tl)∈Dt

i

exp(−|t− tl|
τ

), (1)

where a parameter βi is introduced for each item i to re-
scale the effect, as conformity usually exhibits more severe
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on some items (e.g., soap opera) than others (e.g., science
documentary). Here we simply accumulate the stimulations
from past interactions while discount their contribution ac-
cording to the time interval, so that every interaction of item
i before current time t would contribute to its conformity
bias value cti with different degree according to the time
interval from now(t− tl). This setting is coincident with our
intuition — the currently popular items would have larger
impact on us than the ones that were popular in the far past.
We also introduce a coefficient τ to control the sensitivity of
cti to the time. A smaller τ would make the model focus
more on recent interactions and immunize the interactions
occurred long time ago.

(3) (U, I) → M → Y : these links project user and item
features (e.g., IDs) into their matching scores mui = fθ(u, i).
fθ(u, i) can be implemented by various recommendation
models, such as MF [4], LightGCN [5], DIN [6], etc.

Finally these three components are aggregated into a
final prediction score for recovering the observed historical
interactions:

ŷtui = Tanh(qi + cti)× Softplus(mui), (2)

where a parameter qi is introduced to capture the quality
of each item i. Tanh(·) is an activation function that project
the combined value (always positive) into interval [0,1] to
make the model more stable; and Softplus(·) is an activation
function to ensure the positivity of the matching score.
Tanh(qi + cti) can be understood as popularity bias which
combines the benign effect from the item quality qi (Q→ Y )
and the harmful effect from the conformity cti (C → Y ).

We can still apply the commonly-used BPR [4] recom-
mendation loss over the final prediction score to train the
model. Formally, the training loss is given as follows:

L =
∑

(u,i,t)∈D,j∼Pn

− log(σ(ŷtui − ŷtuj)), (3)

where σ(·) represents the sigmoid function. We conduct
negative sampling to draw 4 negative samples (j) for each
positive instance (i) from distribution Pn for training our
model. As recent work [2], here we simply use a uniform
negative sampling strategy for fair comparison. Note that
we have omitted the L2 regularization terms for clarity.

3.2 Intervention-based Inference

As shown in Figure 3(a), I influences Y through three
paths: I → Q → Y through item quality, I → C → Y
through conformity effect and I → M → Y through user-
item matching score. In order to make the recommendation
benefit from the useful factors while circumvent the harmful
one, we perform the causal intervention to cut off the path
I → C → Y as shown in Figure 3(b) where improper
effect from the conformity has been removed. Formally, we
directly intervene cti with a fixed value c∗ and make the
prediction as:

ŷ∗ui = tanh(qi + c∗)× Softplus(mui). (4)

We simply set the c∗ as 0 in our experiments.

Fig. 4. Causal graph comparison of recent work with our TIDE.

3.3 Links to Recent Work

Recent years have witnessed various debiasing strategies
for popularity bias. Among which, causal inference is the
most successful and representative strategy [2], [7], [8]. We
argue that the inherent nature of this kind of methods is
disentanglement — undo the effect of the popularity bias
to recover user preference on items. The causal graph of
these methods can be simply summarized as Figure 4(a).
Although this graph may be different from the causal graph
claimed in the original papers, Figure 4(a) is indeed coin-
cident with their models. For example, PDA [2] assumes a
click is generated with combining item popularity score and
user-item matching score, i.e., ŷui = pγi × Elu’(mui); DICE
[7] makes a similar assumption except that they model the
sensitivity of users to item popularity (as marked by the
dash line in Figure 4(a)).

This work lies on this scheme but we further conduct
disentanglement of popularity bias. As Figure 4(b) shows,
we split the path regarding to popularity bias (I → P → Y )
into two paths: I → Q → Y the benign effect from item
quality and I → C → Y the harmful effect from confor-
mity. Besides, during the inference stage, instead of blindly
removing popularity bias as [7], [8] (cutting I → P → Y )
or leveraging complete popularity bias in prediction as [2],
we utilize partial popularity bias — leveraging benign part
(maintain path I → Q → Y ) while removing harmful part
(cut path I → C → Y ). In this way, our TIDE can distill
useful information from item popularity and thus yield
empirical improvement over them.

4 EXPERIMENTS

In this section, we conduct experiments to evaluate the
performance of our proposed TIDE. Our experiments are
intended to address the following research questions:

RQ1: Does TIDE outperform SOTA methods for popularity
bias?

RQ2: Is it beneficial to model both static item quality and
dynamic conformity effect? Is it beneficial to remove
the effect of conformity during the inference stage?

RQ3: Do the learned parameters qi capture item quality?

4.1 Experimental Setup

Datasets. We choose four well-known datasets Douban-
Movie, Amazon-CDs, Amazon-Music and Ciao for our ex-
periments, in which Douban-Movie has a strong positive
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TABLE 1
Statistics of the datasets.

Dataset User # Item # Interaction # Date
Douban-Movie 48,799 26,813 7,409,868 2010.1-2017.3
Amazon-CDs 75,258 64,443 1,097,592 1997.11-2014.7

Ciao 5,868 10,724 143,217 2000.5-2011.4
Amazon-Music 5,541 3,568 64,706 1998.4-2014.7

correlation coefficient while Amazon-Music is the most neg-
ative dataset as shown in 1(b), and the other two datasets
have a relatively small correlation coefficient. We select
diverse datasets in experiments to demonstrate the effective-
ness and robustness of our model. These datasets contain
users’ rating records in a chronological order, where each
interaction is rated ranging from 1 to 5 points indicating
users’ satisfaction from low to high. Since it is unreliable to
include users and items with few interactions for evaluation,
we conduct 5-core filtering for the datasets Ciao, Amazon-
CDs and Amazon-Music, and 10-core filtering for Douban-
Movie. The statistics of the datasets are described in Table
1. We follow the setting of PDA [2] and split the datasets
chronologically. Specifically, we split the datasets into 10
parts according to the interaction time, and each part has
the same time interval. The first nine parts are used for
training, while the last part is left for validation and testing,
in which the interactions of half of the users are organized
as the validation set while others are organized as the test
set. We also transform the data into binary implicit feedback
for experiments as [2], [9]. That is, as long as there exists
a rating, the corresponding implicit feedback is assigned
a value of 1, suggesting the item has been interacted (i.e.,
clicked) by the user.

Evaluation Methodology. We train a model with binary
training data and evaluate its performance on the following
two tasks:

• Click prediction task: We evaluate how accurate a
model forecasts users’ future clicks. Specifically, we
apply the model to sort the items that have not been
interacted, and test whether the top-K items would
be clicked by the user in the future (i.e., in test data).
For the matrics, we employ Recall@K (called CP-
Rec@K in this task), Precision@K (CP-Pre@K) and
Normalized Discounted Cumulative Gain@K (CP-
NDCG@K) for evaluating model performance in this
task.

• Preference prediction task: Note that click is not always
coincident with user preference. We further evaluate
how a model retrieves relevant items that users are
indeed fond of. We resort to the ground truth rating
value, and consider the item with a high rating value
(e.g., 5) as positive. As we do not know user’s true
preference on unrated items, in this task, we just
rank the rated items in the test data and evaluate
whether the positive items are retrieved within Top-
K positions. Specifically, precision@K (marked as PP-
Pre@K) and recall@K (PP-Rec@K) are adopted in this
task. Also, considering the number of rated items
is usually small, we set a relatively small K (e.g.,
K = 3).

Comparison methods. Five types of methods are tested
in our experiments:

• MF [4]: the basic matrix factorization model with
BPR loss.

• MF-IPS [10], [11]: a classic strategy for eliminating
popularity bias by re-weighting each instance ac-
cording to item popularity. We refer to [12] and apply
a max-capping trick on IPS value to reduce variance.

• DICE [7]: a framework that leverages cause-specific
data to disentangle user preference and popularity
bias into two sets of embeddings.

• PD and PDA [2]: a state-of-the-art method that per-
forms deconfounded training while intervenes the
popularity bias during model inference. We report
two versions of this work: PD that directly uses
matching score for recommendation; PDA that lever-
ages predicted item popularity score in recommen-
dation. As PDA demonstrates superior performance
over ranking-based methods [13], [14], we do not
include these methods as baselines.

• TIDE: the method proposed in this work. We mainly
test two versions of TIDE: TIDE-full, combining all
the effect from three components for predicting user
future click, i.e., we use ŷTui for ranking; TIDE-int,
which performs intervention to cut off the effect from
the conformity, i.e., ŷ∗ui is utilized.

Implementation details. Matrix Factorization (MF) has
been selected as the main backbone recommendation model
for experiments, and it would be straightforward to re-
place it with more sophisticated models such as Factor-
ization Machine [15], or Neural Network [5], [16]. We
also utilize reparametrization trick to ensure the positivity
of the learned qi and βi, i.e., qi ← Softplus(qi), βi ←
Softplus(βi). We optimize our TIDE with Adam optimizer.
Grid search is used to find the best hyper-parameters based
on the performance on the validation set. The search space
of learning rate and weight decay of the parameters in MF is
{1e-4, 1e-3, 1e-2}; also, we set the decay of qi and βi as 0, and
search their initialization in [-5,-1] with step 1 and learning
rate in {1e-4, 1e-3, 1e-2, 1e-1}; τ is set as 1e7, batch-size is
set as 2,048.

For the experiments on LightGCN-based models, we set
the search space and parameter setting as same as the MF-
based model except the batch size of Douban-movie and
Amazon-CDs is increased to 8,192 for speed and the number
of convolutional layers is searched in {2, 3, 4} as advised by
[5]. We adopt the early stopping strategy that stops training
if performance on the validation data does not increase
for 10 epochs. The setting of compared methods is either
determined by grid search in our experiments or suggested
by their original papers.

All experiments are conducted on a server with 2 Intel
E5-2620 CPUs, 4 NVIDIA GTX2080 GPUs and 256G RAM.
The source code will be available at Github 6.

4.2 Performance Comparison (RQ1)
Performance on click prediction task. Table 2 presents
the performance of the compared methods on the click

6. https://github.com/zzhUSTC2016/TIDE

https://github.com/zzhUSTC2016/TIDE
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TABLE 2
Performance comparison on the click prediction task with MF [4] as backbone. The boldface font denotes the winner in that column. K = 20.

Datasets Douban-Movie Amazon-CDs Amazon-Music Ciao

Metrics CP-
Rec@K

CP-
Pre@K

CP-
Ndcg@K

CP-
Rec@K

CP-
Pre@K

CP-
Ndcg@K

CP-
Rec@K

CP-
Pre@K

CP-
Ndcg@K

CP-
Rec@K

CP-
Pre@K

CP-
Ndcg@K

MF 0.0223 0.0342 0.0370 0.0119 0.0030 0.0035 0.0362 0.0068 0.0080 0.0107 0.0076 0.0086
MF-IPS 0.0220 0.0337 0.0366 0.0118 0.0030 0.0035 0.0378 0.0063 0.0071 0.0109 0.0068 0.0078
DICE 0.0202 0.0323 0.0343 0.0073 0.0019 0.0021 0.0357 0.0058 0.0060 0.0145 0.0103 0.0110
PD 0.0355 0.0465 0.0520 0.0140 0.0032 0.0036 0.0418 0.0071 0.0083 0.0177 0.0110 0.0118
PDA 0.0408 0.0534 0.0596 0.0194 0.0044 0.0052 0.0656 0.0111 0.0125 0.0189 0.0144 0.0159
TIDE-full 0.0483 0.0590 0.0671 0.0243 0.0058 0.0068 0.0837 0.0152 0.0175 0.0244 0.0148 0.0154
Impv 18.59% 10.53% 12.63% 25.27% 30.93% 31.98% 27.69% 36.71% 39.79% 28.99% 2.50% -2.77%
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Fig. 5. Performance comparison of CP-Rec@K where K is set as different value when MF is the backbone model.

TABLE 3
Performance comparison on the preference prediction task. The boldface font denotes the winner in that column.

Datasets Douban-Movie Amazon-CDs Amazon-Music Ciao
Metrics PP-Rec@3 PP-Pre@3 PP-Rec@3 PP-Pre@3 PP-Rec@3 PP-Pre@3 PP-Rec@3 PP-Pre@3

MF 0.1690 0.4357 0.4234 0.6970 0.4692 0.7031 0.2609 0.5564
MF-IPS 0.1676 0.4317 0.4226 0.6983 0.4628 0.6976 0.2658 0.5641
DICE 0.1735 0.4509 0.4195 0.6928 0.4528 0.6794 0.2591 0.5256
PD 0.1621 0.4133 0.4222 0.6956 0.4687 0.7031 0.2664 0.5744
PDA 0.1659 0.4109 0.4277 0.7031 0.4617 0.6922 0.2368 0.5205
TIDE-full 0.1570 0.3873 0.4302 0.7074 0.4678 0.6976 0.2593 0.5538
TIDE-int 0.1780 0.4693 0.4362 0.7178 0.4855 0.7250 0.2670 0.5795

prediction task in terms of three evaluation metrics. The
boldface font denotes the winner in that column. For the
sake of clarity, the row ‘Impv’ shows the relative im-
provement achieved by TIDE-full over all the baselines.
Overall, with few exceptions, our TIDE-full outperforms
all compared baselines. Especially in the dataset Amazon-
Music, the improvements are quite impressive — 27.69%,
36.71% and 39.79% in terms of Precision, Recall and NDCG
respectively. To further validate the performance of our
model, we report the metric CP-Rec at different K value. As
shown in Figure 5, our model TIDE-full outperforms other
methods consistently in all datasets with few exceptions.
These results validate that, by utilizing both the item quality
information and the user conformity effect, TIDE-full can
capture more precise popularity bias and thus make a more
accurate prediction of users’ future behavior.

Performance on preference prediction task. Table 3
presents the performance of the compared methods on pref-

erence prediction task. We have the following observations:
(1) PDA, which consistently outperforms PD in the click
prediction task, performs worse in this task. This interesting
phenomenon reveals the negative impact of popularity bias.
Blindly injecting popularity bias without filtering out its
harmful ingredient would deteriorate the model’s capabil-
ity to capture user interests. Similar results can be seen
from the worse performance of TIDE-full than TIDE-int.
(2) Overall, with few exceptions, our TIDE-int outperforms
all compared methods in this task. This result validates the
effectiveness of disentangling benign and harmful factors of
popularity bias. Without disentanglement, existing methods
sink into a dilemma — they either fail to utilize the impor-
tant signal of the item quality (e.g., TIDE-int outperforms
PD, DICE, MF-IPS), or are disturbed by the harmful con-
formity effect (e.g., TIDE-int outperforms PDA and MF). By
disentangling the two factor and intervening the harmful
factor during the inference, our TIDE-int method could
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TABLE 4
Performance comparison on the click prediction task with LightGCN [5] as backbone. The boldface font denotes the winner in that column. K = 20.

Datasets Douban-Movie Amazon-CDs Amazon-Music Ciao

Metrics CP-
Rec@K

CP-
Pre@K

CP-
Ndcg@K

CP-
Rec@K

CP-
Pre@K

CP-
Ndcg@K

CP-
Rec@K

CP-
Pre@K

CP-
Ndcg@K

CP-
Rec@K

CP-
Pre@K

CP-
Ndcg@K

LightGCN 0.0227 0.0363 0.0390 0.0137 0.0036 0.0040 0.0517 0.0087 0.0095 0.0171 0.0094 0.0105
PDGCN 0.0332 0.0481 0.0534 0.0143 0.0036 0.0040 0.0425 0.0080 0.0084 0.0146 0.0088 0.0190
PDAGCN 0.0409 0.0559 0.0624 0.0195 0.0047 0.0052 0.0662 0.0117 0.0123 0.0182 0.0142 0.0150
TIDE-fullGCN 0.0480 0.0651 0.0734 0.0234 0.0056 0.0062 0.0765 0.0139 0.0154 0.0234 0.0133 0.0138
Impv 17.29% 16.49% 17.62% 19.93% 19.06% 19.54% 15.45% 19.04% 25.94% 28.60% -6.33% -7.95 %

enjoy the merit of the popularity bias while circumvent its
bad effect.

Performance with GCN-based backbone model. To
further validate the effectiveness and the generalization of
TIDE, we make an experiment on a typical GCN-based
backbone model, i.e., LightGCN. The results are presented in
Table 4. Here we simply choose the most SOTA and relevant
baselines PD and PDA for comparison. As we can see, with
few exceptions our TIDE still outperforms the compared
methods in this setting.

4.3 Ablation Study (RQ2)

We conduct ablation study to explore whether it is essential
to model both factors and whether it is essential to perform
interventional inference. We compare our TIDE-full and
TIDE-int with the following special cases: (1) TIDE-noq
and TIDE-noc: where item quality (Q) or conformity effect
(C) is removed in both training and inference stage; (2)
TIDE-e: which is trained as same as TIDE-int but only uses
matching score for recommendation. The characteristics and
performance on the preference prediction task are presented
in Table 5.

Effectiveness of modeling both factors. We observe that
the method modeling two factors (TIDE-int) consistently
outperforms the cases just considering one aspect (TIDE-noq
and TIDE-noc). This result is coincident with our intuition
— modeling both factors is beneficial for capturing popular-
ity bias as well as for distilling useful knowledge about item
quality from it.

Effectiveness of interventional inference. From Table
5, we observe TIDE-int is consistently superior over TIDE-
e and TIDE-full. This result demonstrates the mix nature
of popularity bias — containing both benign and harmful
signals. The model that roughly maintains (TIDE-full) or
removes (TIDE-e) both of them would result in undesirable
performance.

4.4 Exploratory Analysis (RQ3)

To answer the question RQ3, we now explore the learned
qi from two perspectives to provide insights into how TIDE
captures item quality.

Distribution of learned qi. Figure 6 visualizes the dis-
tribution of the learned qi with their average rating value
(simply marked as ARi) on a typical dataset Douban-Movie.
We can observe the strong positive correlation between
them, suggesting our learned parameters qi capture the item
quality successfully. Also, comparing with Figure 1(a), the
curve in Figure 6 is more stable and exhibits less fluctuation.
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Fig. 6. We divide items into 30 groups according to their learned qi and
then calculate average rating values of items in each group. This figure
visualizes the relation of the average rating value with the learned qi on
Douban-Movie.

To further demonstrate the ability of qi in capturing item
quality, we also report the results on the dataset Amazon-
Music where item popularity has a negative correlation with
the average ratings. In Figure 7, we plot the relation (red
line) between the learned qi and the average rating ARi, as
well as the relation (blue line) between item popularity and
ARi for comparison. The result shows that although in such
a hard dataset, qi can still capture information about item
quality and filter out the distraction of the severe conformity
effect.
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Fig. 7. We divide items in Amazon-Music into 10 groups according to
their average rating, and visualize the average item popularity (Blue line)
and the average qi (Red line) in each group.
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TABLE 5
Characteristics of TIDE and its variants. We also report their performance on the preference prediction task.

M : Matching Scores, Q: Quality, C: Conformity

Methods Training with? Inference with? Performance
Douban-Movie Amazon-CDs Amazon-Music Ciao

M? Q? C? M? Q? C? PP-
Rec@3

PP-
Pre@3

PP-
Rec@3

PP-
Pre@3

PP-
Rec@3

PP-
Pre@3

PP-
Rec@3

PP-
Pre@3

MF
√

× ×
√

× × 0.1690 0.4357 0.4234 0.6970 0.4692 0.7031 0.2609 0.5564
TIDE-noc

√ √
×

√ √
× 0.1706 0.4394 0.4319 0.7112 0.4657 0.7031 0.2494 0.5333

TIDE-noq
√

×
√ √

×
√

0.1566 0.3871 0.4255 0.6988 0.4562 0.6831 0.2547 0.5410
TIDE-e

√ √ √ √
× × 0.1527 0.3750 0.4234 0.6977 0.4843 0.7250 0.2651 0.5564

TIDE-full
√ √ √ √ √ √

0.1570 0.3873 0.4302 0.7074 0.4678 0.6976 0.2593 0.5538
TIDE-int

√ √ √ √ √
× 0.1780 0.4693 0.4362 0.7178 0.4855 0.7250 0.2670 0.5795

Ranking correlation comparison. We further validate
the stronger correlation of the average rating value with
qi than with popularity pi. We calculate the Kendall Tau
Ranking Correlation Coefficient (RCC) [17] between the
item lists ranked by them. RCC essentially measures the
probability of two random items being in the same order in
the two ranked lists, and would be more robust and rational
than Pearson Correlation Coefficient (PCC) especially for the
recommendation task. The result is presented in Table 6. We
observe RCC between qi and ARi is consistently larger than
RCC between pi and ARi in all four datasets. Besides, to
our surprise, we observe the absolute values of both metrics
are relatively small. More seriously, RCC between pi and
ARi is negative on the datasets Amazon-CDs, Amazon-
Music and Ciao. This result validates the challenging of
tackling popularity bias. There exists a gap between the
value and ranking — positive correlation in terms of value
may not result in positive correlation in ranking. Although
popularity exhibits positive correlation with ARi in PCC,
its ranking result is easily distorted by other factors in
popularity and deviates from reflecting positive correlation.
TIDE filters out conformity effect from popularity bias and
relatively captures more stable and precise knowledge of
item quality.

TABLE 6
Ranking Correlation Coefficient (RCC) between the lists ranked by

average rating ARi and by the learned parameter qi, as well as
between the lists ranked by average rating ARi and by popularity pi.

Douban-
Movie

Amazon-
CDs

Amazon-
Music Ciao

ARi with qi 0.0947 0.0883 0.0815 0.0777
ARi with pi 0.0384 -0.0646 -0.03284 -0.0318

Effectiveness of learning diverse qi. To validate the
necessary of learning diverse qi, we compare TIDE-int with
its special case TIDE-fixq, where qi for all items are fixed as
a constant value. The results are presented in Figure 8. In all
datasets, TIDE-int consistently outperforms TIDE-fixq with
a certain margin. This result demonstrates that by training
personalized qi for each item, our model indeed learns some
useful information, which is beneficial for capturing item
quality and promoting recommendation performance.

5 RELATED WORK

In this section, we review the most related works from the
following two perspectives.
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Fig. 8. Comparison of TIDE-int with its special case TIDE-fixq, where all
qi are constrained to a constant value.

Popularity Bias in recommendation. Popularity bias
depicting uneven (usually long-tailed) distribution over the
interaction frequency of items, is common in a recommender
system. The negative impact of popularity bias has been
studied in a large number of recent literature. For example,
some works [7], [18] argue that such skewed distribution
may be caused by user conformity, deviating from reflecting
users’ true preference. As such, recommendation models
trained on such biased data would give skewed prediction.
Worse still, recommendation model not only inherits the
bias, but also amplifies bias, making the popular items dom-
inate the top recommendations [13], [19], [20], [21], [22], [23].
This phenomenon has been empirically verified by Abdol-
lahpouri [24]. They find popular items are recommended
to a much greater degree than even what their initial popu-
larity warrants. It would decrease serendipity [25], [26], [27]
and fairness [13], [28], [29], [30] of recommendation results,
hurting user experience and causing customer churn.

Recent works on tackling popularity bias can be mainly
classified into four types: (1) Inverse propensity scoring
(IPS) [11], [31] is a classic strategy that directly adjust the
data distribution with re-weighting each instance according
to item popularity. (2) Ranking adjustment is another type of
method [13], [14] that directly re-rank the recommendation
list to improve the recommendation opportunity of unpop-
ular items. Although simple and straightforward, this type
of methods relies on heuristic artificial design and usually
sacrifices recommendation accuracy. (3) Regularization has
been introduced by some researchers to push the model
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towards balanced recommendation [32], [33], [34], [35]. For
example, Chen et al. [32] leverage regularization to transfer
the knowledge from these well-trained popular items to
the long-tail items; Bonner et al. [33] leverage regularization
to distill knowledge from the uniform data for addressing
popularity bias. (4) Causal inference has been leveraged for
addressing popularity bias. These methods mainly assume
the generative process of the data with causal graphs and
then disentangle the popularity bias from the user prefer-
ence accordingly [2], [7], [8].

However, most of existing methods focus on eliminating
popularity bias. In fact, popularity bias is not always evil. It
may not only result from the users’ conformity to the group,
but also from item quality. It would be valuable to leverage
such important signal in boosting recommendation perfor-
mance. To the best of our knowledge, only one work [2]
considers to leverage popularity bias into recommendation.
However, they directly injecting (predicted) item popularity
score into prediction, which is insufficient for satisfactory
recommendation as the harmful conformity effect is also in-
jected. Different from these works, we consider the double-
edged nature of popularity bias. We aim at disentangling the
benign popularity bias from the harmful one, so that the rec-
ommendation can benefit from the merit while circumvent
the harmful.

Biases in recommendation. Besides popularity bias, re-
cent works have studied other types of biases in recommen-
dation including: Selection bias, which happens as users are
free to choose which items to rate, so that the observed
ratings are not a representative sample of all ratings [36],
[37], [38], [39]; Exposure bias, which happens in implicit
feedback data as users are only exposed to a part of specific
items [24], [36], [40], [41]; Position bias, which happens as
users tend to interact with items in higher position of the
recommendation list [36], [42]; Unfairness [43], [44], which
denotes the system systematically and unfairly discrimi-
nates against certain individuals or groups of individuals
in favor others. Generally, there are substantial works on
addressing these biases issues. We encourage the readers to
refer to the survey [36] for more details.

Disentanglement in recommendation. In terms of dis-
entanglement, existing efforts can be classified into two
lines. The first type of methods is designed for debiasing. As
discussed above, this type of methods aim at disentangling
user true preference from the various data biases [7], [8].
Another type of methods lie in disentangled representation
learning. This kind of methods aims at learning a finer-
granularity representation of users and items, which is
beneficial for robust and explainable recommendation. For
example, Ma et al. [45] leverage Variational Auto-Encoder
[46] to disentangle high-level concepts associated with user
intentions as well as low-level factors (e.g., size or color of
a shirt). Similarly, Wang et al. [47] learn disentangled user
representation with the merits of the interaction graph.

6 CONCLUSION

This paper studies an important but unexplored problem
— how to disentangle the benign popularity bias caused
by item quality from the harmful popularity bias caused

by conformity. We first conduct empirical analyses on real-
world datasets and observe quite different patterns of these
two factors along time: item quality revealing item inherent
property is stable and static while conformity that depends
on item recent clicks is highly time-sensitive. We then pro-
pose a novel time-aware disentangled framework (TIDE),
where a click is generated from three components namely
the static item quality, the dynamic conformity effect, as
well as the user-item matching score. We further provide an
interventional inference strategy such that the recommen-
dation can benefit from the benign popularity bias while
circumvent the harmful one. Extensive experiments on four
real-world datasets demonstrated the effectiveness of the
proposed disentangled model as well as its interventional
inference strategy.

One interesting direction for future work is to explore
a more sophisticated conformity model gβ(·), which could
capture more complex patterns and potentially achieve
better performance than simple sum-exponential structure.
Besides, this work demonstrates popularity bias is double-
edged. We believe other biases may also have this nature.
It will be valuable to transfer the experience of this work to
tackle other biases and to explore their benign and harmful
effect on recommendation.

APPENDIX

We provide more data analyses for better understanding of
our observations. In Figure 2, we define the instant popular-
ity as the number of clicks on the item during the past half
year. To show that our observations are not sensitive to the
lengths of the time slot, we report the corresponding results
of Figure 2(a) and 2(c) with different lengths of the time slot
ranging from 1 month to 3 years as shown in Figure 9 and
Figure 10. These results validate that our observation 2 is
stable with the length of time slot.

Figure 11 gives more examples demonstrating the nega-
tive correlation between the average ratings and the instant
popularity.
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(b) 3 months
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(c) 1 year
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(d) 3 years

Fig. 9. The distribution of the correlation coefficient between the rating value and the instant popularity on Douban-Movie, where instant popularity
denotes the number of clicks on the item in different lengths of time slot.
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(d) 3 years

Fig. 10. This figure illustrates the temporal evolving of the instant popularity for five randomly-selected items on Douban-Movie with instant popularity
calculated in different lengths of time slot.
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(d) Item d

Fig. 11. More examples on Douban-movie which visualize the relation of the rating value with the instant popularity.
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