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Abstract

Large language models (LLMs), owing to their extensive open-
domain knowledge and semantic reasoning capabilities, have been
increasingly integrated into recommender systems (RS). However,
a substantial gap remains between the pre-training objectives of
LLMs and the specific requirements of recommendation tasks. To ad-
dress this gap, supervised fine-tuning (SFT) is commonly performed
on specially curated recommendation datasets to further enhance
their predictive ability. Despite its success, SFT exhibits a critical
limitation: it induces Context Bias, whereby the model over-relies
on auxiliary tokens—such as task descriptions and prefix-generated
tokens—while underutilizing core user interaction tokens that en-
code user-specific preferences. This bias not only undermines rec-
ommendation accuracy but also raises unfairness concerns.

To address this issue, we propose Group Distributionally Ro-
bust Optimization-based Tuning (GDRT), a novel fine-tuning
paradigm that enforces consistent model performance across token
groups with varying degrees of relevance to auxiliary tokens. By
adaptively upweighting underperforming groups, typically those
weakly correlated with auxiliary tokens, GDRT shifts the model’s
attention from superficial auxiliary cues to informative user interac-
tion tokens, thereby mitigating context bias. Extensive experiments
conducted on three public datasets demonstrate that GDRT effec-
tively mitigates context bias, yielding substantial improvements
in recommendation accuracy (with an average NDCG@10 gain of
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24.29%) and significantly enhancing recommendation fairness. The
code is available at https://github.com/WANGBohaO-jpg/GDRT.
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1 Introduction

With remarkable open-domain knowledge and semantic reasoning
capabilities [1, 23], Large Language Models (LLMs) have been exten-
sively explored for integration into recommendation systems (RS)
[68]. One prominent approach involves positioning LLMs as the cen-
tral recommendation backbone [2, 4, 32, 35, 38, 52, 58, 60, 61, 79, 81].
These methods express items as textual descriptions (e.g., titles),
and construct language prompts based on users’ past interactions,
which are then used to instruct LLMs to predict users’ future in-
teractions. Figure 1 illustrates the mechanism of such LLM-based
recommendation. LLMs operate at a fine-grained semantic token
level, sequentially generating tokens of the predicted items by ana-
lyzing their nuanced semantic relations with the user’s previous
interactions and other auxiliary information (e.g., task descriptions,
prefix tokens of the predicted item). This fine-grained paradigm
enables the capture of subtle semantic patterns in user interests and
thus represents a promising direction for advancing recommender
systems [2].

To better align LLMs with recommendation objectives and cap-
ture collaborative filtering signals, Supervised Fine-Tuning (SFT)
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Figure 1: Illustration of LLM-based recommendations and context bias, wherein the model exhibits an over-reliance on auxiliary
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Figure 2: Ratio of attribution values between auxiliary tokens
and user interaction tokens before and after SFT. Left: task
description vs. user interaction tokens. Right: prefix tokens
of predicted item (take the first token) vs. user interaction
tokens.

is commonly employed [2, 4, 38, 58]. In this strategy, each prompt
is paired with the target item description, and the LLM is fine-
tuned to generate the correct prediction. This procedure enables
the model to capture semantic relationships between prompts and
targets present in the training data, often resulting in substantial
performance gains.

However, we find that SFT introduces a significant Context
Bias. Specifically, SFT drives the model to over-rely on auxiliary
tokens (e.g., task descriptions or prefix tokens) while under-utilizing
core interaction tokens that encode user personalized preferences
as shown in Figure 1. To verify this, we conduct Feature Ablation
Attribution analysis [33, 44], a standard approach to quantify each
token’s contribution to model predictions. Figure 2 shows that SFT
dramatically amplifies the relative impact of auxiliary tokens while
significantly suppressing the influence of interaction tokens, with
the influence ratio shifting from about 1:1 before fine-tuning to
more than 6:1 afterward as measured on typical Amazon datasets.

This over-reliance reveals shortcut learning: LLMs simply mem-
orize correlations with frequently occurring auxiliary tokens rather
than grounding predictions in user-specific preferences. Such bias
not only undermines recommendation accuracy but also raises
serious fairness concerns. Specifically, this bias skews recommenda-
tions toward a narrow subset of items whose tokens exhibit higher
semantic relevance to auxiliary tokens. To verify this, we divided
items into five groups based on their relevance to auxiliary tokens.
As shown in Figure 3, over 80% of recommended items fall into the
highest relevance group, while this group comprises only 20% of tar-
get items in the test set. These findings motivate our core research
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Figure 3: Distribution of Top-1 recommended items gener-
ated by the SFT-trained model across five group defined ac-
cording to the semantic relevance of items to the auxiliary
tokens (Group 1: highest relevance, Group 5: lowest rele-
vance). We also present the distribution of the test set across
the same five groups for comparison.

question: How can we mitigate context bias in LLM-based
recommenders?

To address this, we propose a novel fine-tuning strategy GDRT,
that leverages Group Distributionally Robust Optimization (Group
DRO) [50] to mitigate context bias. We first group training instances
according to the semantic relevance between the target token and
the auxiliary tokens, which can be evaluated by the LLM’s predictive
probability when user history is masked. Group DRO then enforces
LLMs to perform consistently well across all groups, regardless of
their relevance strength with auxiliary tokens. This optimization
objective naturally shifts the LLM’s attention away from auxiliary
tokens toward user-specific interaction tokens, as simple reliance
on shortcut auxiliary tokens results in poor performance on groups
with weaker correlations. Importantly, GDRT is easy to implement
and computationally efficient, requiring only high-efficiency group
construction and dynamic sample weighting during training. It can
be seamlessly integrated into various LLM-based recommenders,
yielding improvements in both accuracy and fairness.

Our main contributions are:

e We provide a comprehensive empirical analysis revealing that
SFT in LLM-based recommendation induces significant context
bias, negatively affecting both accuracy and fairness.

e We propose GDRT, a Group DRO-based fine-tuning strategy, to
effectively mitigate context bias in LLM-based recommendation.

e We conduct extensive experiments demonstrating that GDRT
achieves state-of-the-art recommendation performance in both
accuracy and fairness metrics.
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2 Preliminary

2.1 LLM-based Recommendation

Following previous work [2, 4, 38, 39, 45, 78], this paper also focuses
on sequential recommendation [30], a conventional recommenda-
tion scenario in practice. Let V denote the set of items in the recom-
mendation system. Given a user’s historical interaction sequence
S ={s1, 82, ..., sn}, where each s; € V represents the i-th interacted
item, the goal of the RS is to predict the user’s next interaction s;4;
that the user is likely to interact with.

The remarkable success of LLMs across diverse domains [8, 11,
47, 54, 62, 66] has spurred growing interest in their application to
recommendation systems (RS) [68]. A prominent approach is to
directly leverage LLMs as recommenders [35]. As shown in Figure
1, this paradigm constructs a language prompt x = [ x'sk; xuser ],
where x'% represents the task description and x" denotes the
textual form (e.g., titles) of a user’s historical interactions. This
prompt then guides the LLM to generate the descriptions of recom-
mended items y. Notably, LLMs operate at a fine-grained semantic
token level, sequentially generating tokens of the predicted items
according to the model estimated probability Py (y;|x, y<;), where
y; denotes the t-th predictive tokens and y; denotes the prefix
tokens of the prediction. This fine-grained token-level paradigm
has the potential to capture subtle semantic patterns in user prefer-
ences.

To align LLMs with recommendation objectives, supervised fine-
tuning (SFT) is commonly applied, fine-tuning all or part of the
model parameters using recommendation data [2, 4, 38, 81]. In this
process, the training data is reorganized into a set of prompt-target
pairs D = {(x;,y;)}Y, where each x; is the constructed prompt
and y; is the textual description of the target item. The LLM is
optimized with the following log-likelihood objective:

N 1yl
l * *
Lspr = N Z Z log Po(y;, | xi yi <) (1)
i=1 =1
where |y]| denotes the token length of the target item descrip-
tion. SFT increases the generative probability of the target item,
encouraging the LLM to capture the inherent token-level semantic

correlations between each target token yj, and the user interac-

. L task .
tions x;**", task descriptions x*** and the prefix tokens y; _;. This

process often yields substantial performance improvements [4].

2.2 Analyses on Context Bias

In this section, we first identify the context bias in fine-tuning LLM
for recommendation, followed by discussing its negative effect. We
then analyze the underlying causes of this bias and discuss why
existing methods can not effectively address this issue. !

2.2.1 Empirical Evidence Demonstrating Context Bias. We conduct
Feature Ablation Attribution (FAA) [33, 44] analysis to quantify con-
tribution of different token types to the model predictions. FAA is
an attribution method used to evaluate the importance of individual
input components by measuring how the model’s output changes
when specific inputs are masked, and it has been widely adopted

The experimental configuration in this section is consistent with our main experi-
mental setup described in Section 4.1.3. We also provide additional analyses on other
Prompt templates and LLMs in Appendix A.1.
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Figure 4: Proportion of Top-1 recommendations belonging
to Item Group 1 (highest relevance with auxiliary tokens)
over the course of SFT.

in the LLMs for interpreting token-level contributions [5, 76, 80].
A higher attribution value indicates a greater influence of input
tokens on the model’s output. Figure 2 shows the ratio of attribution
values between auxiliary tokens (e.g., task descriptions or prefix
tokens) and user-specific interaction tokens. We report this ratio
both before and after fine-tuning to enable direct comparison. From
these results, we make the following observation:

Context Bias: Supervised fine-tuning (SFT) can bias LLMs to over-
rely on auxiliary tokens while under-utilizing core interaction tokens
that encode user personalized preferences.

Before fine-tuning, the attribution value ratio between task de-
scription and interaction tokens is approximately 1:1. After fine-
tuning, this ratio is markedly amplified across all datasets (e.g.,
Toy: 4.69:1; Clothing: 6.58:1). A similar phenomenon is observed
when comparing prefix tokens with interaction tokens. These re-
sults clearly indicate the presence of context bias, whereby the
model disproportionately relies on auxiliary tokens rather than
more informative interaction tokens.

2.2.2  Negative Effect of Context Bias. Context bias can substan-
tially hinder the effectiveness of LLM-based recommenders, leading
not only to decreased recommendation accuracy but also to pro-
nounced unfairness issues. On the one hand, critical user—item
interaction signals that capture user preferences may be ignored
by the model, severely impairing its ability to deliver personalized
recommendations. On the other hand, the recommendation output
becomes inherently skewed toward a limited subset of items whose
textual tokens exhibit strong correlations with auxiliary tokens.

To empirically verify this phenomenon, we conduct experiments
on the typical Amazon datasets. Specifically, we partition items into
five groups based on their semantic relevance to auxiliary tokens,
measured by the model’s estimated probability:

lyl
1
r(W) = 10 D log Polurlx™y) )
t=1

Here we mask the user historical information in the original prompt
template with the placeholder ‘N/A’, and compute the probability
of the tokens for each item. This measure serves as an indicator of
the relevance between the input and output, a practice commonly
adopted for estimating semantic relevance [31]. Based on this met-
ric, items are sorted and evenly divided into five groups, with Group
1 containing the items of highest relevance and Group 5 the least.

Next, we compute the proportion of Top-1 recommended items
from each group, with the results shown in Figure 3. The analysis
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Figure 5: The co-occurrence rate of different types of token
pairs in the training set.

reveals that fine-tuned LLMs display a pronounced inclination for
items in Group 1, whose tokens exhibit the highest relevance to
auxiliary tokens. Nearly 80% of Top-1 recommendations fall within
this group, despite such items comprising only about 20% of the test
set. As illustrated in Figure 4, this bias becomes progressively more
pronounced as the tuning proceeds. This bias not only undermines
recommendation accuracy but also exacerbates exposure unfairness
by systematically over-promoting items misaligned with individual
user preferences. Such skew can severely degrade user experience
and distort the recommendation ecosystem. For example, it would
incentivize content providers to adopt clickbait-like titles or other
superficial textual strategies to artificially increase token relevance
to the auxiliary tokens.

2.2.3  Origins of Context Bias. The emergence of context bias can be
traced to biases inherent in the training data. As shown in Figure 5,
the co-occurrence rate between auxiliary tokens and target item
tokens is significantly higher than those between interaction tokens
and target item tokens. This is expected, as task prompts appear in
every training instance, and prefix tokens are always accompanied
for item tokens. Consequently, during fine-tuning, the LLM tends to
capture shortcut patterns, simply memorizing frequent correlations
with auxiliary tokens, while neglecting the more important user-
specific interaction signals. This incurs context bias and motivates
the need for improved fine-tuning strategies.

2.2.4 Limitations of Related Strategies. Several recent studies have
explored bias and fairness issues in LLM-based RS. However, the
characteristics of these biases differ from those of context bias.
Specifically, context bias arises during fine-tuning and reflects the
inherent over-reliance of LLMs on auxiliary tokens. In contrast,
earlier work has primarily focused on biases such as popularity
bias [21, 22, 29, 37, 41], arising from imbalanced item frequency in
training data; position bias [6,7, 17, 27, 28, 42, 43, 72], caused by the
model’s sensitivity to the ordering of candidate items; amplifica-
tion bias [3], arising from length normalization, which favors items
containing tokens with generation probabilities close to 1. These
biases stem from distinct sources and mechanisms. Consequently,
this newly identified form of context bias warrants explicit and
targeted mitigation, yet recent work has fallen short in addressing
this issue (cf Table 2).

Another related work, CFT [75], aims to encourage LLMs to
better leverage user interaction information. CFT introduces coun-
terfactual learning to forcibly enhance the influence of interaction
tokens for each training instance. However, this strategy suffers
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from multiple aspects of limitations: (1) Objective misalignment.
The counterfactual objective is not directly aligned with improving
recommendation accuracy or fairness, and its contribution to these
aspects remains uncertain. In fact, CFT only treats this objective as
an auxiliary loss and over-emphasis on this term has been observed
to lead to substantial performance degradation. (2) Difficulty in
weight selection. CFT relies on manually specified weights to
determine the degree to which a training instance should rely on in-
teraction tokens. In fact, the optimal weights can vary substantially
across instances and are difficult to estimate accurately. Manual
specification is therefore challenging, prone to deviation from the
ideal value, and ultimately detrimental to model effectiveness. Em-
pirically, even when we directly employ the official source code
of CFT and conduct a fine-grained hyperparameter search, CFT
yields only limited performance gains on some datasets (cf. Table
2). (3) High computational overhead. CFT requires to process
counterfactual instances, resulting in more than double the training
time compared with SFT (cf. Figure 12). In contrast, our GDRT is
explicitly aligned with the target objective, enabling the model to
consistently perform well across different instance groups. This
naturally encourages greater focus on interaction tokens without
requiring manual specification of influence strengths.

3 Methodology

The above analyses reveal a significant context bias inherent in fine-
tuning LLMs for recommendation. To address this issue, we propose
a novel fine-tuning framework, termed GDRT, which leverages
Group Distributionally Robust Optimization (Group DRO) [50]
to mitigate such bias. This section first outlines the general idea
of GDRT, and then describes the group partitioning strategy and
customized loss function.

General Idea. Rather than directly intervening the learning
process to manually enhance the effect of interaction tokens, we
pursue an alternative objective: ensuring that the model achieves
consistently strong performance across target tokens regardless of
their degree of relevance to auxiliary tokens. It naturally shifts the
LLM’s attention away from auxiliary tokens towards user-specific
interaction tokens, as simple reliance on shortcut auxiliary tokens
results in poor performance on the instances with weak correlations.
Besides, this objective is directly aligned with the goals of high
recommendation accuracy and fairness.

To implement this idea, we adopt Group DRO, which partitions
the training data into multiple groups and uses an adversarial train-
ing mechanism to encourage great performance across all groups.
Group DRO has been widely applied in various domains and shown
effectiveness in mitigating group disparities and shortcut corre-
lations [46, 50, 77]. In applying Group DRO to our problem, we
address two key questions: (1) how to construct groups that capture
varying degrees of relevance to auxiliary tokens; and (2) how to
design a loss function that is computationally efficient.

Token Grouping by Relevance with Auxiliary Tokens. Our
objective is to ensure consistent model performance across groups
that differ in their degree of relevance to auxiliary tokens. Accord-
ingly, the constructed groupings should capture variations in this
relevance. Towards this end, we compute the predictive probabil-
ity of each target token conditioned solely on the corresponding
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Figure 6: Loss of token groups with varying degrees of rel-
evance to auxiliary tokens in the SFT-trained biased model.
Target tokens are grouped into strong- and weak-relevance
sets using K-means on relevance scores computed with Eq. 3.

auxiliary tokens:

task, y;‘i<t) . (3)
where y;, denotes the t-th token of the target item in the i-th
training sample, and y; _, denotes its prefix tokens. Based on these
relevance scores, all target tokens are partitioned into G disjoint
groups {G, ..., Gg} using the K-means algorithm?, where G is a
hyperparameter that determines the granularity of grouping. Each
group G, contains the index (i, t) of target tokens exhibiting similar
degrees of relevance to auxiliary tokens, whereas tokens belonging
to different groups demonstrate distinct relevance levels.

Unlike Eq. 2, which evaluates item-wise relevance between the
entire target item and the auxiliary tokens, Eq. 3 computes token-
wise relevance. This distinction is crucial, as different tokens within
the same target item may exhibit varying degrees of relevance to the
auxiliary tokens. Such finer-grained grouping can more effectively
capture variations in this relevance.

The Objective of GDRT. Subsequently, we employ Group DRO
to enforce consistent model performance across groups with dif-
ferent strength of relevance. Specifically, the training objective of
GDRT is defined as:

r(yi.) =log Py (y?,t | x

G
Loprr =max ), 0(9)L(9) st Dri(Q.U) <1
g=1
(4)
1

L9 =1g,

Z —log Py (th | xi, yz<t)
(it)eGy

where £(g) represents the vanilla generative loss for group G, and
|G, represents the number of target tokens in group G. The term
Q denotes the weight distribution over groups, acting as a flexible
adversarial perturbation to the original empirical distribution, with
Q(g) being the weight assigned to the g-th group. This weight
distribution is regularized via a Kullback-Leibler divergence term
Dk1(Q,U) between the weight distribution Q and the uniform
distribution U, with the parameter 1 controlling the perturbation
magnitude.

Comparing Leprr (Eq. 4) with the original SFT objective Lspr
(Eq. 1), the main difference lies in the introduction of the additional
group weighting term Q(g). Intuitively, Group DRO imposes an ad-
versarial shift to the group distribution by perturbing the relevance

2We can simply employ the scikit-learn package to implement the K-means algorithm.
Considering that r(y;, ) is a numerical value, it can be evenly partitioned according

to its magnitude, yielding comparable results.
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Table 1: Statistics of the datasets.

Dataset  #Users #Items #Interactions #Density
Toy 19124 11758 165247 0.0735%
Clothing 39230 22948 277534 0.0308%
Book 16559 6344 151928 0.1446%

distribution with respect to auxiliary tokens, thereby compelling
the model to perform consistently well across groups under differ-
ent adversarial re-weightings. This mechanism naturally mitigates
the model’s reliance on auxiliary tokens, and encourages the model
to perform consistently well across different groups.

Efficient Implementation. While Group DRO involves the
complex adversarial optimization, it can be simplified to an equiva-
lent closed-form objective. We have the following lemma:

LEmMA 1. Equation 4 can be reformulated as the following objec-
tive:
eL9)/T

G
Leprr = Z Q(9)L(g9), Qg = W

g=1

©)

The parameter t is the dual Lagrange coefficient associated with the
constraint Dk (Q,U) < 1.

The lemma yields an explicit closed-form solution for the group
weights Q(g). From the perspective of these weights, the effect
of Group DRO can be well understood: groups with higher losses,
which typically correspond to tokens exhibit weaker relevance with
auxiliary tokens (see Figure 6), receive larger weights. This adaptive
reweighting encourages the model to allocate greater optimization
emphasis to underperforming groups, thereby enhancing its learn-
ing on samples with low auxiliary-token relevance. As a result,
the model attains more balanced performance across groups and
effectively mitigates its over-reliance on auxiliary tokens.

This closed-form also facilitates an efficient implementation of
GDRT. Compared to SFT, the additional steps just involve: parti-
tioning the token groups based on Eq. 3, and dynamically updating
the group weights according to Eq. 5. The time complexity of GDRT
is the same as the basic SFT, and our empirical experiments also
demonstrate their close running time (cf. Figure 12). Besides, this
simple reformulation makes the integration of GDRT into exist-
ing LLM-based RS straightforward, requiring only minimal code
changes.

4 Experiments

We aim to answer the following research questions:

RQ1: How does GDRT perform compared to SOTA methods?
RQ2: Can GDRT be integrated into other LLM-based RS?
RQ3: Does GDRT mitigate context bias?

RQ4: How do the hyperparameters affect the GDRT?

RQ5: How does the efficiency of GDRT compare with baselines?

4.1 Experimental Settings

4.1.1 Datasets. Three widely used real-world datasets—Amazon
Toys and Games, Amazon Clothing, Shoes and Jewelry, and Amazon
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Table 2: The performance comparison on three real-world datasets. The best result is bolded. Lower MGU and DGU indicate

better fairness.

Dataset | Metric | SASRec  DROS SASRec++ SFT  Reweight D3  SPRec CFT  GDRT
NDCG@57T | 0.0057 0.0095 00120 00118  0.0084 00115 00148 0.0119 0.0152
NDCG@10T | 0.0073 0.0118 00144 00158 00121  0.0160 0.0175 0.0158 0.0203

Toy HIT@5 1 0.0090  0.0167  0.0200  0.0202  0.0146  0.0186 0.0234 0.0188 0.0246
HIT@10 T 0.0138  0.0240  0.0271 00330  0.0261  0.0325 00317 0.0311 0.0405
MGU@5 | / / / 01870 02119 01740 02255 0.1964 0.1288
DGU@5 | / / / 06122 0.6655 05722 0.7197 0.6257 0.4031
NDCG@5T | 0.0016 0.0043 00024  0.0038  0.0038  0.0049 0.0045 0.0042 0.0054
NDCG@10 T | 0.0024 0.0053  0.0033  0.0063  0.0066  0.0075 0.0072 0.0068 0.0096

Clothing | FIT@5 T 0.0032  0.0080  0.0042  0.0078  0.0074  0.0100 0.0084 0.0086 0.0118
HIT@10 T 0.0058  0.0110  0.0070  0.0156  0.0160  0.0180 0.0168 0.0168 0.0246
MGU@5 | / / / 0.1553 02491  0.1211 01728 0.1410 0.0522
DGU@5 | / / / 04908 07988  0.4069 0.5443 0.4686 0.1996
NDCG@5T | 0.0054 0.0060  0.0065  0.0067  0.0051  0.0073 0.0033 0.0080 0.0139
NDCG@10 T | 0.0071  0.0084  0.0081  0.0103  0.0070  0.0112 0.0071 0.0105 0.0145

Book HIT@5 1 0.0089  0.0110  0.0100  0.0116  0.0100  0.0130 0.0057 0.0137 0.0226
HIT@10 1 0.0141 00185  0.0153  0.0228  0.0160  0.0240 0.0178 0.0219 0.0244
MGU@5 | / / / 0.1433 01382 01229 01709 0.1657 0.0579
DGU@5 | / / / 04742 03406  0.4238 05477 04643 0.2240

Table 3: Performance comparison under different LLM-based
RS. The best result is bolded.

Method ‘ Toy ‘ Clothing

| NDCG@5 DGU@5 | NDCG@5 DGU@5
MSL 0.0198 0.7162 0.0077 0.5815
MSL+GDRT 0.0253  0.2697 | 0.0096  0.1469
LLaRA 0.0131 0.6485 0.0041 0.5412
LLaRA+GDRT | 0.0168  0.4249 | 0.0053  0.2320
A-LLM 0.0129 0.6122 0.0045 0.5238
A-LLM+GDRT | 0.0160  0.4192 | 0.0053  0.1817

Books®*—are employed in our experiments. To ensure fair compar-
ison, we follow the data preprocessing procedures employed in
recent literature [2, 16, 58]. Specifically, we first apply the 5-core
setting to the raw datasets. For user interaction sequences exceeding
11 interactions, we segment the sequences using a sliding window
of length 11. The segmented sequences are then sorted in ascending
order by timestamp and partitioned into training, validation, and
test sets in an 8:1:1 ratio. Due to the large size of Amazon Books,
we randomly retain 100,000 items prior to 5-core processing. The
statistics of the processed datasets are summarized in Table 1.

4.1.2  Baselines. The methods compared fall into several categories:
(1) Traditional RS: SASRec [30], SASRec++ [34], DROS [71]. (2)
LLM-based RS: SFT [2], CFT [75], MSL [58], LLaRA [38], A-LLM
[32]. (3) Debiasing for LLM-based RS: Reweight [29], SPRec [21],
D3 [3]. For a detailed description, see Appendix A.2.

4.1.3  Implementation Details. For all LLM-based methods, we adopt
LLaMA3.2-3B [19] as the backbone, with the number of training
epochs set to 5. The prompt design follows [2]. For inference, we

3https://jmcauley.ucsd.edu/data/amazon/index_2014.html

consistently employ Constrained Beam Search (CBS) across all base-
lines, following prior work [3, 58], to ensure that the recommended
items are drawn from the item set. The beam size is fixed at 10.
For evaluation, we evaluate the NDCG@?5 on the validation set
for each epoch’s checkpoint and select the checkpoint with the
highest score for testing. The corresponding results on the test set
are reported as the final performance. For the hyperparameters
in GDRT, the number of groups G is tuned from {2, 5, 10}, and
7 is tuned from {0.1,0.2,0.3,0.5,1.0}. To ensure fair comparisons,
we utilize the source code provided by the original authors and
tune the hyperparameters of all baseline methods according to the
guidelines specified in their respective publications.

4.1.4  Metrics. Four widely used evaluation metrics are employed
in this study: NDCG@K and Hit Ratio@K are used to evaluate rec-
ommendation accuracy, while MGU@K and DGU@K are adopted to
evaluate fairness [29] (K=5, 10). Specifically, for the fairness metrics,
items are divided into five groups according to Equation 2. We then
calculate the discrepancy between each group’s proportion in the
Top-K recommendations and its proportion in the user’s interac-
tion history. MGU@K measures the average of these discrepancies,
whereas DGU@K quantifies the gap between the maximum and
minimum discrepancies across groups. Accordingly, smaller values
of MGU@K and DGU@K indicate that the distribution of recom-
mended items is more aligned with that of the user’s historical
interactions, reflecting better fairness.

4.2 Performance Comparison (RQ1 & RQ2)

Table 2 presents a comparative analysis of the proposed GDRT
method against the baselines. Overall, GDRT demonstrates substan-
tial performance improvements across all datasets. By mitigating
context bias, reducing excessive reliance on auxiliary tokens, and
enhancing the model’s ability to capture user-specific behavioral
patterns, GDRT delivers marked gains in both accuracy and fairness.
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Figure 7: Ratio of attribution values between auxiliary tokens
and user interaction tokens using SFT and GDRT. Left: task
description vs. user interaction tokens. Right: prefix tokens
of predicted item (take the first token) vs. user interaction
tokens.
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Figure 8: Distribution of Top-1 recommended items from the
GDRT-trained model across five groups defined by auxiliary-
token relevance (Group 1: highest relevance, Group 5: lowest
relevance), with test-set distribution for comparison.

Specifically, GDRT achieves an average improvement of 24.29% in
NDCG@10 and 37.43% reduction in MGU@5 compared with the
best baseline. In contrast, other comparison methods yield only mar-
ginal improvements over SFT, and their lack of explicit mechanisms
to address context bias results in limited fairness enhancement.
Furthermore, since GDRT operates solely by modifying the loss
function, it can be easily integrated into existing LLM-based RS
without altering their architectures. To verify its general applica-
bility, we further evaluate GDRT when incorporated into several
advanced LLM-based recommendation methods. As shown in Table
3, GDRT consistently yields significant improvements in both per-
formance and fairness across all evaluated methods, demonstrating
its strong generalization capability. Additional comparisons using
alternative prompt templates and LLMs beyond those used in the
main experiments are provided in Appendix A.3.

4.3 In-depth Analysis (RQ3)

In this section, we present an empirical analysis of the effective-
ness of GDRT in mitigating context bias. First, we perform FAA
on both SFT- and GDRT-trained models, measuring the ratio of
attribution values assigned to auxiliary tokens versus interaction
tokens. As shown in Figure 7, GDRT yields a significantly lower ra-
tio than SFT, indicating that GDRT effectively alleviates the model’s
over-reliance on auxiliary tokens. Furthermore, we analyze the rec-
ommendation distributions on different item groups with varying
degrees of auxiliary-token relevance. As illustrated in Figure 8,
the recommendation distribution generated by the GDRT-trained

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

Toy Book
1.0 1.0
—=— GDRT
0.8 0.8
c c SFT
L 2
EDS EDG
QDA QD4
3 /.__-\-——I-——' 9
I I
o 0.2 a 0.2
—a— s 5 o
0.0 0.0
0 1 2 3 4 5 0 1 2 3 4 5
Epoch Epoch

Figure 9: Proportion of Top-1 recommendations belonging
to Item Group 1 (highest relevance with auxiliary tokens)
during training with SFT and GDRT.
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model closely align with the distribution of the test set. This im-
provement can be attributed to GDRT’s ability to suppress the
tendency of SFT to progressively amplify items highly correlated
with auxiliary tokens as shown in Figure 9. Overall, these results
demonstrate that GDRT effectively mitigates context bias.

4.4 Hyper-Parameter Sensitivities (RQ4)

In this section, we perform a sensitivity analysis on the hyperpa-
rameters of GDRT: the number of groups G in K-means (Figure
10) and the coefficient 7 in DRO (Figure 11). For both parameters,
model performance exhibits a trend of initially increasing and then
decreasing as the parameter values rise. This phenomenon can be
explained as follows. For G, an excessively small value may group
highly heterogeneous data together, thereby diminishing the differ-
ences in auxiliary-token relevance between groups. Conversely, an
overly large G results in groups containing too few samples to reli-
ably represent the underlying distribution. As for 7, a smaller value
places greater emphasis on groups with higher losses; however,
overemphasizing the worst-performing group can cause overfitting
and impair overall generalization. In contrast, a larger 7 balances
optimization across all groups, but may reduce group-wise con-
sistency in performance. Besides, the model demonstrates strong
performance across a wide range of parameter settings, indicating
the robustness of GDRT to hyperparameter selection.
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4.5 Efficiency Comparison (RQ5)

This section compares the efficiency and performance of GDRT
with baselines. As illustrated in Figure 12, GDRT demonstrates both
optimal performance and high computational efficiency, incurring
negligible overhead compared to SFT. In contrast, CFT introduces
additional counterfactual samples leading to substantially higher
computational costs. SPRec, based on DPO [48], requires an extra
reference model and negative samples during training, resulting in
a considerable increase in runtime. Although Reweight and D3 are
relatively efficient, their performance improvements are limited.

5 Related Work

5.1 Sequential Recommendation

Sequential recommendation focuses on predicting the next item
a user will be interested in based on their historical interactions.
Compared to collaborative filtering [9, 10, 57, 69, 70, 74], sequential
recommendation incorporates temporal information and places
greater emphasis on capturing the evolving patterns of user inter-
ests. With the advancement of deep learning, numerous architec-
tures based on deep neural networks have been introduced into
the sequential recommendation. For example, GRU4Rec [26] em-
ploys RNNs, while Caser [53] utilizes CNNs to effectively capture
long-term dependencies and modeling user interest patterns from
historical behavior. More advanced models such as SASRec [30] and
BERT4Rec [51] leverage self-attention mechanisms [56], enabling
the identification of the most relevant parts within the sequence.
Due to the dynamic nature of data distributions as time evolves
[63, 64], DROS [71] introduces DRO [49, 67] to further enhance the
model’s robustness against distributional shifts caused by temporal
changes. The readers may refer to the survey [20] for more details.

5.2 Biases in LLM-based Recommendation

Large Language Models (LLMs), with their powerful capabilities in
comprehension, reasoning, and extensive knowledge [1, 19, 23, 55],
have been widely applied to recommendation systems [14, 15, 59,
68]. One prominent paradigm is LLM-based RS [35], which directly
leverages LLMs as the backbone of the recommender. Subsequent
studies have explored fine-tuning LLMs on domain-specific rec-
ommendation datasets to further enhance their recommendation
capabilities [2, 4, 12, 32, 35, 38, 58, 60, 81].

Recent studies have extensively explored bias and fairness issues
in LLM-based RS, such as popularity bias [21, 22, 29, 37, 40, 41],

Bohao Wang et al.

position bias [6, 7, 17, 27, 28, 42, 43, 72], amplification bias [3], and
bias stemming from LLMs’ preferences for specific item attributes
[18, 29, 36, 73]. Nevertheless, existing research has largely over-
looked context bias, which arises during fine-tuning and reflects the
inherent over-reliance of LLMs on auxiliary tokens. Since existing
debiasing methods fail to account for this factor, their effective-
ness remains limited. CFT [75] seeks to enhance the modeling of
users’ historical interactions, but suffers from objective misalign-
ment, weight selection challenges, and high computational cost,
restricting its applicability. These limitations are further discussed
in Section 2.2.4.

5.3 Group Distributionally Robust Optimization

Group Distributionally Robust Optimization (Group DRO) [50] is
an optimization framework that operates over predefined sam-
ple groups, aiming to achieve consistent and reliable performance
across them by emphasizing the optimizing of the worst-performing
group during training. It has been widely applied in various do-
mains [46, 50, 77] and has demonstrated strong effectiveness in
mitigating group disparities [25, 77] as well as reducing models’
reliance on shortcut correlations [13, 24]. Several studies have ap-
plied Group DRO to RS. For example, S-DRO [65] uses group DRO
to improve the experience of underrepresented user groups that
tend to engage with less popular items. PDRO [77] extends this
approach with popularity-aware mechanisms to prevent harming
the performance of popular items.

6 Conclusion

In this work, we identify a key limitation of supervised fine-tuning
(SFT) in LLM-based recommenders: it often induces Context Bias,
whereby the model over-relies on auxiliary tokens (e.g., task de-
scriptions and prefix-generated tokens) while underutilizing core
user interaction information. This bias undermines recommenda-
tion accuracy and raises unfairness concerns. To address this issue,
we introduce Group Distributionally Robust Optimization-based
Tuning (GDRT), which aims to reduce the model’s over-reliance
on auxiliary tokens by applying Group DRO across token groups
with varying degrees of relevance to auxiliary tokens. Extensive
experiments on multiple public datasets demonstrate that GDRT
effectively mitigates context bias, thereby significantly improving
recommendation accuracy and enhancing fairness.

This work investigates a novel form of bias introduced by the
integration of LLMs into recommenders, which is not present in
traditional recommendation models. A promising avenue for future
work is to examine whether LLM-based RS exhibit additional, as-yet
unidentified biases.
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A Appendices

A.1 Additional Validation of Context Bias
Across Prompt Templates and LLMs

In this section, to further rule out the potential influence of prompt
templates and different LLM backbones on the analysis of context
bias, we extend the FAA experiments described in Section 2.2.1 to
a broader range of prompt templates (see Figure 13) and LLM back-
bones (see Figure 14), beyond those used in the main experiments.
Specifically, for prompt templates, we adopt those proposed in [38]
and [3], which we refer to as Prompt1 and Prompt2, respectively.
For LLM backbones, we evaluate LLaMA3-8B [19] and Qwen2.5-
1.5B [55]. Across all prompt template and backbone configurations,
SFT consistently amplifies the ratio of attribution values between
auxiliary tokens and user-interaction tokens. This observation in-
dicates that context bias persistently exists across different prompt
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templates and LLM backbones. The underlying reason is that the
origin of context bias lies in the dataset itself: the co-occurrence
rate between auxiliary tokens and target item tokens is significantly
higher than that between interaction tokens and target item tokens,
as discussed in Section 2.2.3.

Prompt2

Task description
/ Interaction

Promptl
Task description
/ Interaction
Pretrain
SFT

Prefix tokens
/ Interaction

Prefix tokens
/ Interaction

Attribution Ratio
Attribution Ratio

Toy Clothing ' Toy Clothing Toy Clothing ' Toy Clothing
Dataset Dataset Dataset Dataset

Figure 13: Ratio of attribution values between auxiliary to-
kens and user-interaction tokens before and after SFT across
different prompt templates.

LLaMA3-8B
Task description Prefix tokens
/ Interaction / Interaction
Pretrain
SFT

Qwen2.5-1.5B
Task description Prefix tokens
/ Interaction / Interaction

Attribution Ratio
Attribution Ratio

Toy Clothing ' Toy Clothing Toy Clothing ' Toy Clothing
Dataset Dataset Dataset Dataset

Figure 14: Ratio of attribution values between auxiliary to-
kens and user-interaction tokens before and after SFT across
different LLMs.

A.2 Details of Baselines
The methods compared fall into several categories:

e Traditional RS (SASRec [30], SASRec++ [34], DROS [71]):
SASRec is a representative sequential recommendation model
that employs self-attention mechanisms to effectively capture
users’ dynamic interest patterns from historical interaction
sequences. Building upon SASRec, SASRec++ introduces an im-
proved training objective by adopting the softmax loss instead
of BCE loss used in original SASRec, which leads to more sta-
ble optimization and enhanced recommendation performance.
DROS incorporates Distributionally Robust Optimization (DRO)
into sequential recommendation, aiming to improve model ro-
bustness under distributional shifts.

LLM-based RS (SFT [2], CFT [75], MSL [58], LLaRA [38],
A-LLM [32]): This line of work leverages the strong repre-
sentation and reasoning capabilities of LLMs for recommenda-
tion. SFT applies instruction-tuning strategies with carefully
designed templates to adapt LLMs to recommendation tasks.
CFT incorporates a causal loss to strengthen the behavior se-
quence modeling capabilities of LLMs. MSL improves the loss
function specifically tailoring it to optimize recommendation-
oriented objectives. LLaRA enhances LLM-based recommenders
by incorporating embeddings from traditional recommendation
models, enabling better exploitation of collaborative filtering
signals. A-LLM extends this idea by aligning these collaborative
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embeddings with their corresponding textual semantics, facili-
tating more effective integration of structured and unstructured
information.

e Debiasing Methods for LLM-based RS (Reweight [29],
SPRec [21], D3 [3]): These methods focus on mitigating vari-
ous biases that arise when applying LLMs to recommendation.
Reweight addresses popularity bias by balancing recommen-
dations using pre-calculated item weights. SPRec proposes a
popularity-aware negative sampling strategy within Direct Pref-
erence Optimization (DPO) [48] to reduce popularity bias. D3
focuses on mitigating amplification bias during inference by
improving the decoding strategy, preventing the model from
over-recommending items whose textual representations con-
tain tokens with excessively high generation probabilities.

A.3 Additional Performance Comparison
Across Prompt Templates and LLMs

In this section, we present additional comparative experiments on
the performance of GDRT and SFT that go beyond the prompt
templates and LLM backbones used in the main experiments. As
summarized in Tables 4 and 5, GDRT consistently improves recom-
mendation accuracy while achieving substantial gains in fairness
across all evaluated configurations, demonstrating strong general-
ization ability over a broader range of prompts and LLMs.

Table 4: Performance comparison of SFT and GDRT across
different prompt templates. The best result is bolded.

Prompt ‘ Dataset | Method ‘ NDCG@5 DGU@5
SFT 0.0118 0.6549
Toy GDRT 0.0144  0.4616

Prompt1 [38]
Clothing SFT 0.0033 0.4631
GDRT 0.0052  0.2025
SFT 0.0116 0.5765
Toy GDRT | 00136  0.3987

Prompt2 [3]
Clothing SFT 0.0039 0.5231
GDRT 0.0045  0.1893

Table 5: Performance comparison of SFT and GDRT across
different LLMs. The best result is bolded.

LLM | Dataset | Method | NDCG@5 DGU@5
Toy SFT 00151  0.6861

Llamas.gB GDRT | 00173  0.5970
Clothin | SFT 0.0039  0.5801

€| GDRT | 0.0062  0.2068

- SFT 0.0098  0.4849

Owen25-L5B GDRT | 00117  0.2311
Clothing | SFT 0.0018  0.3538

€ | GDRT | 0.0026 0.0778
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A.4 The proof of Lemma 1
The original formulation of GDRT

G
Leprr = mgxz Q9 L(g), st Dxkr(QU)<n  (6)
g=1

can be rewritten in the expectation form as
max Ego[L(9)]

Q(9) )

<
U(9)
In the following, we focus on how to eliminate the inner maxi-
mization optimization problem and the KL constraint term. As-
sume W(g) = Q(g9)/U(g) and define a convex function ¢(x) =
xlogx — x + 1. Then the divergence Dk, (Q,U) can be written as
Ey[¢(W)]. The inner layer maximization optimization problem
can be reformulated as follow:

max By [LW]

st. Ey[p(W)] < n,By[W] =1

As a convex optimization problem, we use the Lagrangian function
to solve it:

Trrzl(l)r}; max By [LW] = 7(Bu [$(W)] - 1) + BBy [W] - 1)

L+p } o

T
= min {m -+ By [muz}x (TW - ng(W))]}

s.t.Bg.o[log

®

W —¢(W)

= mi -p+ E
rrrzl(l),nﬁ{ny B rmax Ey

L+p
720,
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Notice that maxy, (#W - ¢(W)) = QS*(#) is the convex con-
L9+

jugate function of ¢(x) and we have ¢*(x) = e¥-1.W(g) =e~ =
when the maximum value is obtained.

Tnzltl)l}i' {‘U] - p+ 7By max (L : ﬁW - (ﬁ(W))}}
= ‘?21(1)1}3 {n] - B+ 1Ey [e# - 1]} (10)

. L
S

L) L)
where f = —~rlog Eg.y [eT] and W(g) = —*%——7~7 whenthe

L(g
]Eg/~U e T

minimum value is obtained. We consider the Lagrange multiplier 7
as a hyperparameter related to the robustness radius . Then we
can get the unconstrained optimization problem as follows,
£L(9)

T

Lcprr = + tlog By yexp ( (11)

where the worst-case distribution
ooy exp (L(g)/7)
QO =VOg  ap(L® /0]
Since U is a uniform distribution
< exp(L(g)/r)
9= 5 Texp(L(g)/0)]

Thus lemma 1 is proven.
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