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Abstract
Large language models (LLMs), owing to their extensive open-

domain knowledge and semantic reasoning capabilities, have been

increasingly integrated into recommender systems (RS). However,

a substantial gap remains between the pre-training objectives of

LLMs and the specific requirements of recommendation tasks. To ad-

dress this gap, supervised fine-tuning (SFT) is commonly performed

on specially curated recommendation datasets to further enhance

their predictive ability. Despite its success, SFT exhibits a critical

limitation: it induces Context Bias, whereby the model over-relies

on auxiliary tokens—such as task descriptions and prefix-generated

tokens—while underutilizing core user interaction tokens that en-

code user-specific preferences. This bias not only undermines rec-

ommendation accuracy but also raises unfairness concerns.

To address this issue, we propose Group Distributionally Ro-
bust Optimization-based Tuning (GDRT), a novel fine-tuning
paradigm that enforces consistent model performance across token

groups with varying degrees of relevance to auxiliary tokens. By

adaptively upweighting underperforming groups, typically those

weakly correlated with auxiliary tokens, GDRT shifts the model’s

attention from superficial auxiliary cues to informative user interac-

tion tokens, thereby mitigating context bias. Extensive experiments

conducted on three public datasets demonstrate that GDRT effec-

tively mitigates context bias, yielding substantial improvements

in recommendation accuracy (with an average NDCG@10 gain of
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24.29%) and significantly enhancing recommendation fairness. The

code is available at https://github.com/WANGBohaO-jpg/GDRT.
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1 Introduction
With remarkable open-domain knowledge and semantic reasoning

capabilities [1, 23], Large Language Models (LLMs) have been exten-

sively explored for integration into recommendation systems (RS)

[68]. One prominent approach involves positioning LLMs as the cen-

tral recommendation backbone [2, 4, 32, 35, 38, 52, 58, 60, 61, 79, 81].

These methods express items as textual descriptions (e.g., titles),
and construct language prompts based on users’ past interactions,

which are then used to instruct LLMs to predict users’ future in-

teractions. Figure 1 illustrates the mechanism of such LLM-based

recommendation. LLMs operate at a fine-grained semantic token

level, sequentially generating tokens of the predicted items by ana-

lyzing their nuanced semantic relations with the user’s previous

interactions and other auxiliary information (e.g., task descriptions,

prefix tokens of the predicted item). This fine-grained paradigm

enables the capture of subtle semantic patterns in user interests and

thus represents a promising direction for advancing recommender

systems [2].

To better align LLMs with recommendation objectives and cap-

ture collaborative filtering signals, Supervised Fine-Tuning (SFT)
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Figure 1: Illustration of LLM-based recommendations and context bias, wherein themodel exhibits an over-reliance on auxiliary
tokens (i.e., Task description, Prefix tokens) and insufficient utilization of User interaction during generation.

Figure 2: Ratio of attribution values between auxiliary tokens
and user interaction tokens before and after SFT. Left: task
description vs. user interaction tokens. Right: prefix tokens
of predicted item (take the first token) vs. user interaction
tokens.

is commonly employed [2, 4, 38, 58]. In this strategy, each prompt

is paired with the target item description, and the LLM is fine-

tuned to generate the correct prediction. This procedure enables

the model to capture semantic relationships between prompts and

targets present in the training data, often resulting in substantial

performance gains.

However, we find that SFT introduces a significant Context
Bias. Specifically, SFT drives the model to over-rely on auxiliary

tokens (e.g., task descriptions or prefix tokens) while under-utilizing
core interaction tokens that encode user personalized preferences

as shown in Figure 1. To verify this, we conduct Feature Ablation

Attribution analysis [33, 44], a standard approach to quantify each

token’s contribution to model predictions. Figure 2 shows that SFT

dramatically amplifies the relative impact of auxiliary tokens while

significantly suppressing the influence of interaction tokens, with

the influence ratio shifting from about 1:1 before fine-tuning to

more than 6:1 afterward as measured on typical Amazon datasets.

This over-reliance reveals shortcut learning: LLMs simply mem-

orize correlations with frequently occurring auxiliary tokens rather

than grounding predictions in user-specific preferences. Such bias

not only undermines recommendation accuracy but also raises

serious fairness concerns. Specifically, this bias skews recommenda-

tions toward a narrow subset of items whose tokens exhibit higher

semantic relevance to auxiliary tokens. To verify this, we divided

items into five groups based on their relevance to auxiliary tokens.

As shown in Figure 3, over 80% of recommended items fall into the

highest relevance group, while this group comprises only 20% of tar-

get items in the test set. These findings motivate our core research

Figure 3: Distribution of Top-1 recommended items gener-
ated by the SFT-trained model across five group defined ac-
cording to the semantic relevance of items to the auxiliary
tokens (Group 1: highest relevance, Group 5: lowest rele-
vance). We also present the distribution of the test set across
the same five groups for comparison.

question: How can we mitigate context bias in LLM-based
recommenders?

To address this, we propose a novel fine-tuning strategy GDRT,
that leverages Group Distributionally Robust Optimization (Group

DRO) [50] to mitigate context bias. We first group training instances

according to the semantic relevance between the target token and

the auxiliary tokens, which can be evaluated by the LLM’s predictive

probability when user history is masked. Group DRO then enforces

LLMs to perform consistently well across all groups, regardless of

their relevance strength with auxiliary tokens. This optimization

objective naturally shifts the LLM’s attention away from auxiliary

tokens toward user-specific interaction tokens, as simple reliance

on shortcut auxiliary tokens results in poor performance on groups

with weaker correlations. Importantly, GDRT is easy to implement

and computationally efficient, requiring only high-efficiency group

construction and dynamic sample weighting during training. It can

be seamlessly integrated into various LLM-based recommenders,

yielding improvements in both accuracy and fairness.

Our main contributions are:

• We provide a comprehensive empirical analysis revealing that

SFT in LLM-based recommendation induces significant context

bias, negatively affecting both accuracy and fairness.

• We propose GDRT, a Group DRO-based fine-tuning strategy, to

effectively mitigate context bias in LLM-based recommendation.

• We conduct extensive experiments demonstrating that GDRT

achieves state-of-the-art recommendation performance in both

accuracy and fairness metrics.
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2 Preliminary
2.1 LLM-based Recommendation
Following previous work [2, 4, 38, 39, 45, 78], this paper also focuses

on sequential recommendation [30], a conventional recommenda-

tion scenario in practice. LetV denote the set of items in the recom-

mendation system. Given a user’s historical interaction sequence

𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑛}, where each 𝑠𝑖 ∈ V represents the 𝑖-th interacted

item, the goal of the RS is to predict the user’s next interaction 𝑠𝑛+1
that the user is likely to interact with.

The remarkable success of LLMs across diverse domains [8, 11,

47, 54, 62, 66] has spurred growing interest in their application to

recommendation systems (RS) [68]. A prominent approach is to

directly leverage LLMs as recommenders [35]. As shown in Figure

1, this paradigm constructs a language prompt 𝑥 = [ 𝑥 task; 𝑥user ],
where 𝑥 task represents the task description and 𝑥user denotes the

textual form (e.g., titles) of a user’s historical interactions. This

prompt then guides the LLM to generate the descriptions of recom-

mended items 𝑦. Notably, LLMs operate at a fine-grained semantic

token level, sequentially generating tokens of the predicted items

according to the model estimated probability 𝑃𝜃 (𝑦𝑡 |𝑥,𝑦<𝑡 ), where
𝑦𝑡 denotes the 𝑡-th predictive tokens and 𝑦<𝑡 denotes the prefix

tokens of the prediction. This fine-grained token-level paradigm

has the potential to capture subtle semantic patterns in user prefer-

ences.

To align LLMs with recommendation objectives, supervised fine-

tuning (SFT) is commonly applied, fine-tuning all or part of the

model parameters using recommendation data [2, 4, 38, 81]. In this

process, the training data is reorganized into a set of prompt–target

pairs D = {(𝑥𝑖 , 𝑦∗𝑖 )}𝑁𝑖=1 where each 𝑥𝑖 is the constructed prompt

and 𝑦∗𝑖 is the textual description of the target item. The LLM is

optimized with the following log-likelihood objective:

L𝑆𝐹𝑇 = − 1

𝑁

𝑁∑︁
𝑖=1

|𝑦∗
𝑖
|∑︁

𝑡=1

log 𝑃𝜃
(
𝑦∗𝑖,𝑡 | 𝑥𝑖 , 𝑦∗𝑖,<𝑡

)
(1)

where |𝑦∗𝑖 | denotes the token length of the target item descrip-

tion. SFT increases the generative probability of the target item,

encouraging the LLM to capture the inherent token-level semantic

correlations between each target token 𝑦∗𝑖,𝑡 and the user interac-

tions 𝑥user𝑖 , task descriptions 𝑥 task and the prefix tokens 𝑦∗𝑖,<𝑡 . This
process often yields substantial performance improvements [4].

2.2 Analyses on Context Bias
In this section, we first identify the context bias in fine-tuning LLM

for recommendation, followed by discussing its negative effect. We

then analyze the underlying causes of this bias and discuss why

existing methods can not effectively address this issue.
1

2.2.1 Empirical Evidence Demonstrating Context Bias. We conduct

Feature Ablation Attribution (FAA) [33, 44] analysis to quantify con-

tribution of different token types to the model predictions. FAA is

an attribution method used to evaluate the importance of individual

input components by measuring how the model’s output changes

when specific inputs are masked, and it has been widely adopted

1
The experimental configuration in this section is consistent with our main experi-

mental setup described in Section 4.1.3. We also provide additional analyses on other

Prompt templates and LLMs in Appendix A.1.

Figure 4: Proportion of Top-1 recommendations belonging
to Item Group 1 (highest relevance with auxiliary tokens)
over the course of SFT.

in the LLMs for interpreting token-level contributions [5, 76, 80].

A higher attribution value indicates a greater influence of input

tokens on the model’s output. Figure 2 shows the ratio of attribution

values between auxiliary tokens (e.g., task descriptions or prefix

tokens) and user-specific interaction tokens. We report this ratio

both before and after fine-tuning to enable direct comparison. From

these results, we make the following observation:

Context Bias: Supervised fine-tuning (SFT) can bias LLMs to over-
rely on auxiliary tokens while under-utilizing core interaction tokens
that encode user personalized preferences.

Before fine-tuning, the attribution value ratio between task de-

scription and interaction tokens is approximately 1:1. After fine-

tuning, this ratio is markedly amplified across all datasets (e.g.,
Toy: 4.69:1; Clothing: 6.58:1). A similar phenomenon is observed

when comparing prefix tokens with interaction tokens. These re-

sults clearly indicate the presence of context bias, whereby the

model disproportionately relies on auxiliary tokens rather than

more informative interaction tokens.

2.2.2 Negative Effect of Context Bias. Context bias can substan-

tially hinder the effectiveness of LLM-based recommenders, leading

not only to decreased recommendation accuracy but also to pro-

nounced unfairness issues. On the one hand, critical user–item

interaction signals that capture user preferences may be ignored

by the model, severely impairing its ability to deliver personalized

recommendations. On the other hand, the recommendation output

becomes inherently skewed toward a limited subset of items whose

textual tokens exhibit strong correlations with auxiliary tokens.

To empirically verify this phenomenon, we conduct experiments

on the typical Amazon datasets. Specifically, we partition items into

five groups based on their semantic relevance to auxiliary tokens,

measured by the model’s estimated probability:

𝑟 (𝑦) = 1

|𝑦 |

|𝑦 |∑︁
𝑡=1

log 𝑃𝜃 (𝑦𝑡 |𝑥 task, 𝑦<𝑡 ) (2)

Here we mask the user historical information in the original prompt

template with the placeholder ‘N/A’, and compute the probability

of the tokens for each item. This measure serves as an indicator of

the relevance between the input and output, a practice commonly

adopted for estimating semantic relevance [31]. Based on this met-

ric, items are sorted and evenly divided into five groups, with Group

1 containing the items of highest relevance and Group 5 the least.

Next, we compute the proportion of Top-1 recommended items

from each group, with the results shown in Figure 3. The analysis
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Figure 5: The co-occurrence rate of different types of token
pairs in the training set.

reveals that fine-tuned LLMs display a pronounced inclination for

items in Group 1, whose tokens exhibit the highest relevance to

auxiliary tokens. Nearly 80% of Top-1 recommendations fall within

this group, despite such items comprising only about 20% of the test

set. As illustrated in Figure 4, this bias becomes progressively more

pronounced as the tuning proceeds. This bias not only undermines

recommendation accuracy but also exacerbates exposure unfairness

by systematically over-promoting items misaligned with individual

user preferences. Such skew can severely degrade user experience

and distort the recommendation ecosystem. For example, it would

incentivize content providers to adopt clickbait-like titles or other

superficial textual strategies to artificially increase token relevance

to the auxiliary tokens.

2.2.3 Origins of Context Bias. The emergence of context bias can be

traced to biases inherent in the training data. As shown in Figure 5,

the co-occurrence rate between auxiliary tokens and target item

tokens is significantly higher than those between interaction tokens

and target item tokens. This is expected, as task prompts appear in

every training instance, and prefix tokens are always accompanied

for item tokens. Consequently, during fine-tuning, the LLM tends to

capture shortcut patterns, simply memorizing frequent correlations

with auxiliary tokens, while neglecting the more important user-

specific interaction signals. This incurs context bias and motivates

the need for improved fine-tuning strategies.

2.2.4 Limitations of Related Strategies. Several recent studies have
explored bias and fairness issues in LLM-based RS. However, the

characteristics of these biases differ from those of context bias.
Specifically, context bias arises during fine-tuning and reflects the

inherent over-reliance of LLMs on auxiliary tokens. In contrast,

earlier work has primarily focused on biases such as popularity
bias [21, 22, 29, 37, 41], arising from imbalanced item frequency in

training data; position bias [6, 7, 17, 27, 28, 42, 43, 72], caused by the
model’s sensitivity to the ordering of candidate items; amplifica-
tion bias [3], arising from length normalization, which favors items

containing tokens with generation probabilities close to 1. These

biases stem from distinct sources and mechanisms. Consequently,

this newly identified form of context bias warrants explicit and

targeted mitigation, yet recent work has fallen short in addressing

this issue (cf. Table 2).
Another related work, CFT [75], aims to encourage LLMs to

better leverage user interaction information. CFT introduces coun-

terfactual learning to forcibly enhance the influence of interaction

tokens for each training instance. However, this strategy suffers

from multiple aspects of limitations: (1) Objective misalignment.
The counterfactual objective is not directly aligned with improving

recommendation accuracy or fairness, and its contribution to these

aspects remains uncertain. In fact, CFT only treats this objective as

an auxiliary loss and over-emphasis on this term has been observed

to lead to substantial performance degradation. (2) Difficulty in
weight selection. CFT relies on manually specified weights to

determine the degree to which a training instance should rely on in-

teraction tokens. In fact, the optimal weights can vary substantially

across instances and are difficult to estimate accurately. Manual

specification is therefore challenging, prone to deviation from the

ideal value, and ultimately detrimental to model effectiveness. Em-

pirically, even when we directly employ the official source code

of CFT and conduct a fine-grained hyperparameter search, CFT

yields only limited performance gains on some datasets (cf. Table
2). (3) High computational overhead. CFT requires to process

counterfactual instances, resulting in more than double the training

time compared with SFT (cf. Figure 12). In contrast, our GDRT is

explicitly aligned with the target objective, enabling the model to

consistently perform well across different instance groups. This

naturally encourages greater focus on interaction tokens without

requiring manual specification of influence strengths.

3 Methodology
The above analyses reveal a significant context bias inherent in fine-

tuning LLMs for recommendation. To address this issue, we propose

a novel fine-tuning framework, termed GDRT, which leverages

Group Distributionally Robust Optimization (Group DRO) [50]

to mitigate such bias. This section first outlines the general idea

of GDRT, and then describes the group partitioning strategy and

customized loss function.

General Idea. Rather than directly intervening the learning

process to manually enhance the effect of interaction tokens, we

pursue an alternative objective: ensuring that the model achieves
consistently strong performance across target tokens regardless of
their degree of relevance to auxiliary tokens. It naturally shifts the

LLM’s attention away from auxiliary tokens towards user-specific

interaction tokens, as simple reliance on shortcut auxiliary tokens

results in poor performance on the instances with weak correlations.

Besides, this objective is directly aligned with the goals of high

recommendation accuracy and fairness.

To implement this idea, we adopt Group DRO, which partitions

the training data into multiple groups and uses an adversarial train-

ing mechanism to encourage great performance across all groups.

Group DRO has been widely applied in various domains and shown

effectiveness in mitigating group disparities and shortcut corre-

lations [46, 50, 77]. In applying Group DRO to our problem, we

address two key questions: (1) how to construct groups that capture

varying degrees of relevance to auxiliary tokens; and (2) how to

design a loss function that is computationally efficient.

Token Grouping by Relevance with Auxiliary Tokens. Our
objective is to ensure consistent model performance across groups

that differ in their degree of relevance to auxiliary tokens. Accord-

ingly, the constructed groupings should capture variations in this

relevance. Towards this end, we compute the predictive probabil-

ity of each target token conditioned solely on the corresponding
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Figure 6: Loss of token groups with varying degrees of rel-
evance to auxiliary tokens in the SFT-trained biased model.
Target tokens are grouped into strong- and weak-relevance
sets using K-means on relevance scores computed with Eq. 3.

auxiliary tokens:

𝑟 (𝑦∗𝑖,𝑡 ) = log 𝑃𝜃

(
𝑦∗𝑖,𝑡 | 𝑥 task, 𝑦∗𝑖,<𝑡

)
. (3)

where 𝑦∗𝑖,𝑡 denotes the 𝑡-th token of the target item in the 𝑖-th

training sample, and 𝑦∗𝑖,<𝑡 denotes its prefix tokens. Based on these

relevance scores, all target tokens are partitioned into 𝐺 disjoint

groups {G1, . . . ,G𝐺 } using the K-means algorithm
2
, where 𝐺 is a

hyperparameter that determines the granularity of grouping. Each

group G𝑔 contains the index (𝑖, 𝑡) of target tokens exhibiting similar

degrees of relevance to auxiliary tokens, whereas tokens belonging

to different groups demonstrate distinct relevance levels.

Unlike Eq. 2, which evaluates item-wise relevance between the

entire target item and the auxiliary tokens, Eq. 3 computes token-
wise relevance. This distinction is crucial, as different tokens within

the same target itemmay exhibit varying degrees of relevance to the

auxiliary tokens. Such finer-grained grouping can more effectively

capture variations in this relevance.

The Objective of GDRT. Subsequently, we employ Group DRO

to enforce consistent model performance across groups with dif-

ferent strength of relevance. Specifically, the training objective of

GDRT is defined as:

L𝐺𝐷𝑅𝑇 =max

𝑄

𝐺∑︁
𝑔=1

𝑄 (𝑔)L(𝑔) s.t. 𝐷𝐾𝐿 (𝑄,𝑈 ) ≤ 𝜂

L(𝑔) = 1

|G𝑔 |
∑︁

(𝑖,𝑡 ) ∈G𝑔

− log 𝑃𝜃
(
𝑦∗𝑖,𝑡 | 𝑥𝑖 , 𝑦∗𝑖,<𝑡

) (4)

where L(𝑔) represents the vanilla generative loss for group G𝑔 , and
|G𝑔 | represents the number of target tokens in group G𝑔 . The term
𝑄 denotes the weight distribution over groups, acting as a flexible

adversarial perturbation to the original empirical distribution, with

𝑄 (𝑔) being the weight assigned to the 𝑔-th group. This weight

distribution is regularized via a Kullback–Leibler divergence term

𝐷𝐾𝐿 (𝑄,𝑈 ) between the weight distribution 𝑄 and the uniform

distribution𝑈 , with the parameter 𝜂 controlling the perturbation

magnitude.

Comparing L𝐺𝐷𝑅𝑇 (Eq. 4) with the original SFT objective L𝑆𝐹𝑇

(Eq. 1), the main difference lies in the introduction of the additional

group weighting term𝑄 (𝑔). Intuitively, Group DRO imposes an ad-

versarial shift to the group distribution by perturbing the relevance

2
We can simply employ the scikit-learn package to implement the K-means algorithm.

Considering that 𝑟 (𝑦∗𝑖,𝑡 ) is a numerical value, it can be evenly partitioned according

to its magnitude, yielding comparable results.

Table 1: Statistics of the datasets.

Dataset #Users #Items #Interactions #Density

Toy 19124 11758 165247 0.0735%

Clothing 39230 22948 277534 0.0308%

Book 16559 6344 151928 0.1446%

distribution with respect to auxiliary tokens, thereby compelling

the model to perform consistently well across groups under differ-

ent adversarial re-weightings. This mechanism naturally mitigates

the model’s reliance on auxiliary tokens, and encourages the model

to perform consistently well across different groups.

Efficient Implementation. While Group DRO involves the

complex adversarial optimization, it can be simplified to an equiva-

lent closed-form objective. We have the following lemma:

Lemma 1. Equation 4 can be reformulated as the following objec-
tive:

L𝐺𝐷𝑅𝑇 =

𝐺∑︁
𝑔=1

𝑄 (𝑔)L(𝑔), 𝑄 (𝑔) = 𝑒L(𝑔)/𝜏∑𝐺
𝑔′=1 𝑒

L(𝑔′ )/𝜏 (5)

The parameter 𝜏 is the dual Lagrange coefficient associated with the
constraint 𝐷𝐾𝐿 (𝑄,𝑈 ) ≤ 𝜂.

The lemma yields an explicit closed-form solution for the group

weights 𝑄 (𝑔). From the perspective of these weights, the effect

of Group DRO can be well understood: groups with higher losses,

which typically correspond to tokens exhibit weaker relevance with

auxiliary tokens (see Figure 6), receive larger weights. This adaptive

reweighting encourages the model to allocate greater optimization

emphasis to underperforming groups, thereby enhancing its learn-

ing on samples with low auxiliary-token relevance. As a result,

the model attains more balanced performance across groups and

effectively mitigates its over-reliance on auxiliary tokens.

This closed-form also facilitates an efficient implementation of

GDRT. Compared to SFT, the additional steps just involve: parti-

tioning the token groups based on Eq. 3, and dynamically updating

the group weights according to Eq. 5. The time complexity of GDRT

is the same as the basic SFT, and our empirical experiments also

demonstrate their close running time (cf. Figure 12). Besides, this
simple reformulation makes the integration of GDRT into exist-

ing LLM-based RS straightforward, requiring only minimal code

changes.

4 Experiments
We aim to answer the following research questions:

• RQ1: How does GDRT perform compared to SOTA methods?

• RQ2: Can GDRT be integrated into other LLM-based RS?

• RQ3: Does GDRT mitigate context bias?

• RQ4: How do the hyperparameters affect the GDRT?

• RQ5: How does the efficiency of GDRT compare with baselines?

4.1 Experimental Settings
4.1.1 Datasets. Three widely used real-world datasets—Amazon
Toys and Games, Amazon Clothing, Shoes and Jewelry, and Amazon
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Table 2: The performance comparison on three real-world datasets. The best result is bolded. Lower MGU and DGU indicate
better fairness.

Dataset Metric SASRec DROS SASRec++ SFT Reweight D3 SPRec CFT GDRT

NDCG@5 ↑ 0.0057 0.0095 0.0120 0.0118 0.0084 0.0115 0.0148 0.0119 0.0152
NDCG@10 ↑ 0.0073 0.0118 0.0144 0.0158 0.0121 0.0160 0.0175 0.0158 0.0203
HIT@5 ↑ 0.0090 0.0167 0.0200 0.0202 0.0146 0.0186 0.0234 0.0188 0.0246
HIT@10 ↑ 0.0138 0.0240 0.0271 0.0330 0.0261 0.0325 0.0317 0.0311 0.0405
MGU@5 ↓ / / / 0.1870 0.2119 0.1740 0.2255 0.1964 0.1288

Toy

DGU@5 ↓ / / / 0.6122 0.6655 0.5722 0.7197 0.6257 0.4031

NDCG@5 ↑ 0.0016 0.0043 0.0024 0.0038 0.0038 0.0049 0.0045 0.0042 0.0054
NDCG@10 ↑ 0.0024 0.0053 0.0033 0.0063 0.0066 0.0075 0.0072 0.0068 0.0096
HIT@5 ↑ 0.0032 0.0080 0.0042 0.0078 0.0074 0.0100 0.0084 0.0086 0.0118
HIT@10 ↑ 0.0058 0.0110 0.0070 0.0156 0.0160 0.0180 0.0168 0.0168 0.0246
MGU@5 ↓ / / / 0.1553 0.2491 0.1211 0.1728 0.1410 0.0522

Clothing

DGU@5 ↓ / / / 0.4908 0.7988 0.4069 0.5443 0.4686 0.1996

NDCG@5 ↑ 0.0054 0.0060 0.0065 0.0067 0.0051 0.0073 0.0033 0.0080 0.0139
NDCG@10 ↑ 0.0071 0.0084 0.0081 0.0103 0.0070 0.0112 0.0071 0.0105 0.0145
HIT@5 ↑ 0.0089 0.0110 0.0100 0.0116 0.0100 0.0130 0.0057 0.0137 0.0226
HIT@10 ↑ 0.0141 0.0185 0.0153 0.0228 0.0160 0.0240 0.0178 0.0219 0.0244
MGU@5 ↓ / / / 0.1433 0.1382 0.1229 0.1709 0.1657 0.0579

Book

DGU@5 ↓ / / / 0.4742 0.3406 0.4238 0.5477 0.4643 0.2240

Table 3: Performance comparison under different LLM-based
RS. The best result is bolded.

Method

Toy Clothing

NDCG@5 DGU@5 NDCG@5 DGU@5

MSL 0.0198 0.7162 0.0077 0.5815

MSL+GDRT 0.0253 0.2697 0.0096 0.1469

LLaRA 0.0131 0.6485 0.0041 0.5412

LLaRA+GDRT 0.0168 0.4249 0.0053 0.2320

A-LLM 0.0129 0.6122 0.0045 0.5238

A-LLM+GDRT 0.0160 0.4192 0.0053 0.1817

Books3—are employed in our experiments. To ensure fair compar-

ison, we follow the data preprocessing procedures employed in

recent literature [2, 16, 58]. Specifically, we first apply the 5-core

setting to the raw datasets. For user interaction sequences exceeding

11 interactions, we segment the sequences using a sliding window

of length 11. The segmented sequences are then sorted in ascending

order by timestamp and partitioned into training, validation, and

test sets in an 8:1:1 ratio. Due to the large size of Amazon Books,
we randomly retain 100,000 items prior to 5-core processing. The

statistics of the processed datasets are summarized in Table 1.

4.1.2 Baselines. Themethods compared fall into several categories:

(1) Traditional RS: SASRec [30], SASRec++ [34], DROS [71]. (2)
LLM-based RS: SFT [2], CFT [75], MSL [58], LLaRA [38], A-LLM

[32]. (3) Debiasing for LLM-based RS: Reweight [29], SPRec [21],
D3 [3]. For a detailed description, see Appendix A.2.

4.1.3 Implementation Details. For all LLM-basedmethods, we adopt

LLaMA3.2-3B [19] as the backbone, with the number of training

epochs set to 5. The prompt design follows [2]. For inference, we

3
https://jmcauley.ucsd.edu/data/amazon/index_2014.html

consistently employ Constrained Beam Search (CBS) across all base-

lines, following prior work [3, 58], to ensure that the recommended

items are drawn from the item set. The beam size is fixed at 10.

For evaluation, we evaluate the NDCG@5 on the validation set

for each epoch’s checkpoint and select the checkpoint with the

highest score for testing. The corresponding results on the test set

are reported as the final performance. For the hyperparameters

in GDRT, the number of groups 𝐺 is tuned from {2, 5, 10}, and
𝜏 is tuned from {0.1, 0.2, 0.3, 0.5, 1.0}. To ensure fair comparisons,

we utilize the source code provided by the original authors and

tune the hyperparameters of all baseline methods according to the

guidelines specified in their respective publications.

4.1.4 Metrics. Four widely used evaluation metrics are employed

in this study: NDCG@K and Hit Ratio@K are used to evaluate rec-

ommendation accuracy, whileMGU@K and DGU@K are adopted to

evaluate fairness [29] (K=5, 10). Specifically, for the fairness metrics,

items are divided into five groups according to Equation 2. We then

calculate the discrepancy between each group’s proportion in the

Top-K recommendations and its proportion in the user’s interac-

tion history. MGU@K measures the average of these discrepancies,

whereas DGU@K quantifies the gap between the maximum and

minimum discrepancies across groups. Accordingly, smaller values

of MGU@K and DGU@K indicate that the distribution of recom-

mended items is more aligned with that of the user’s historical

interactions, reflecting better fairness.

4.2 Performance Comparison (RQ1 & RQ2)
Table 2 presents a comparative analysis of the proposed GDRT

method against the baselines. Overall, GDRT demonstrates substan-

tial performance improvements across all datasets. By mitigating

context bias, reducing excessive reliance on auxiliary tokens, and

enhancing the model’s ability to capture user-specific behavioral

patterns, GDRT delivers marked gains in both accuracy and fairness.

https://jmcauley.ucsd.edu/data/amazon/index_2014.html
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Figure 7: Ratio of attribution values between auxiliary tokens
and user interaction tokens using SFT and GDRT. Left: task
description vs. user interaction tokens. Right: prefix tokens
of predicted item (take the first token) vs. user interaction
tokens.

Figure 8: Distribution of Top-1 recommended items from the
GDRT-trained model across five groups defined by auxiliary-
token relevance (Group 1: highest relevance, Group 5: lowest
relevance), with test-set distribution for comparison.

Specifically, GDRT achieves an average improvement of 24.29% in

NDCG@10 and 37.43% reduction in MGU@5 compared with the

best baseline. In contrast, other comparisonmethods yield only mar-

ginal improvements over SFT, and their lack of explicit mechanisms

to address context bias results in limited fairness enhancement.

Furthermore, since GDRT operates solely by modifying the loss

function, it can be easily integrated into existing LLM-based RS

without altering their architectures. To verify its general applica-

bility, we further evaluate GDRT when incorporated into several

advanced LLM-based recommendation methods. As shown in Table

3, GDRT consistently yields significant improvements in both per-

formance and fairness across all evaluated methods, demonstrating

its strong generalization capability. Additional comparisons using

alternative prompt templates and LLMs beyond those used in the

main experiments are provided in Appendix A.3.

4.3 In-depth Analysis (RQ3)
In this section, we present an empirical analysis of the effective-

ness of GDRT in mitigating context bias. First, we perform FAA

on both SFT- and GDRT-trained models, measuring the ratio of

attribution values assigned to auxiliary tokens versus interaction

tokens. As shown in Figure 7, GDRT yields a significantly lower ra-

tio than SFT, indicating that GDRT effectively alleviates the model’s

over-reliance on auxiliary tokens. Furthermore, we analyze the rec-

ommendation distributions on different item groups with varying

degrees of auxiliary-token relevance. As illustrated in Figure 8,

the recommendation distribution generated by the GDRT-trained

Figure 9: Proportion of Top-1 recommendations belonging
to Item Group 1 (highest relevance with auxiliary tokens)
during training with SFT and GDRT.

Figure 10: Hyperparameter sensitivity analysis on group
number 𝐺 (dashed: SFT baseline).

Figure 11: Hyperparameter sensitivity analysis on parameter
𝜏 in DRO (dashed: SFT baseline).

model closely align with the distribution of the test set. This im-

provement can be attributed to GDRT’s ability to suppress the

tendency of SFT to progressively amplify items highly correlated

with auxiliary tokens as shown in Figure 9. Overall, these results

demonstrate that GDRT effectively mitigates context bias.

4.4 Hyper-Parameter Sensitivities (RQ4)
In this section, we perform a sensitivity analysis on the hyperpa-

rameters of GDRT: the number of groups 𝐺 in K-means (Figure

10) and the coefficient 𝜏 in DRO (Figure 11). For both parameters,

model performance exhibits a trend of initially increasing and then

decreasing as the parameter values rise. This phenomenon can be

explained as follows. For 𝐺 , an excessively small value may group

highly heterogeneous data together, thereby diminishing the differ-

ences in auxiliary-token relevance between groups. Conversely, an

overly large 𝐺 results in groups containing too few samples to reli-

ably represent the underlying distribution. As for 𝜏 , a smaller value

places greater emphasis on groups with higher losses; however,

overemphasizing the worst-performing group can cause overfitting

and impair overall generalization. In contrast, a larger 𝜏 balances

optimization across all groups, but may reduce group-wise con-

sistency in performance. Besides, the model demonstrates strong

performance across a wide range of parameter settings, indicating

the robustness of GDRT to hyperparameter selection.
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Figure 12: Performance comparisons in terms of both recom-
mendation accuracy and efficiency.

4.5 Efficiency Comparison (RQ5)
This section compares the efficiency and performance of GDRT

with baselines. As illustrated in Figure 12, GDRT demonstrates both

optimal performance and high computational efficiency, incurring

negligible overhead compared to SFT. In contrast, CFT introduces

additional counterfactual samples leading to substantially higher

computational costs. SPRec, based on DPO [48], requires an extra

reference model and negative samples during training, resulting in

a considerable increase in runtime. Although Reweight and D3 are

relatively efficient, their performance improvements are limited.

5 Related Work
5.1 Sequential Recommendation
Sequential recommendation focuses on predicting the next item

a user will be interested in based on their historical interactions.

Compared to collaborative filtering [9, 10, 57, 69, 70, 74], sequential

recommendation incorporates temporal information and places

greater emphasis on capturing the evolving patterns of user inter-

ests. With the advancement of deep learning, numerous architec-

tures based on deep neural networks have been introduced into

the sequential recommendation. For example, GRU4Rec [26] em-

ploys RNNs, while Caser [53] utilizes CNNs to effectively capture

long-term dependencies and modeling user interest patterns from

historical behavior. More advanced models such as SASRec [30] and

BERT4Rec [51] leverage self-attention mechanisms [56], enabling

the identification of the most relevant parts within the sequence.

Due to the dynamic nature of data distributions as time evolves

[63, 64], DROS [71] introduces DRO [49, 67] to further enhance the

model’s robustness against distributional shifts caused by temporal

changes. The readers may refer to the survey [20] for more details.

5.2 Biases in LLM-based Recommendation
Large Language Models (LLMs), with their powerful capabilities in

comprehension, reasoning, and extensive knowledge [1, 19, 23, 55],

have been widely applied to recommendation systems [14, 15, 59,

68]. One prominent paradigm is LLM-based RS [35], which directly

leverages LLMs as the backbone of the recommender. Subsequent

studies have explored fine-tuning LLMs on domain-specific rec-

ommendation datasets to further enhance their recommendation

capabilities [2, 4, 12, 32, 35, 38, 58, 60, 81].

Recent studies have extensively explored bias and fairness issues

in LLM-based RS, such as popularity bias [21, 22, 29, 37, 40, 41],

position bias [6, 7, 17, 27, 28, 42, 43, 72], amplification bias [3], and

bias stemming from LLMs’ preferences for specific item attributes

[18, 29, 36, 73]. Nevertheless, existing research has largely over-

looked context bias, which arises during fine-tuning and reflects the

inherent over-reliance of LLMs on auxiliary tokens. Since existing

debiasing methods fail to account for this factor, their effective-

ness remains limited. CFT [75] seeks to enhance the modeling of

users’ historical interactions, but suffers from objective misalign-

ment, weight selection challenges, and high computational cost,

restricting its applicability. These limitations are further discussed

in Section 2.2.4.

5.3 Group Distributionally Robust Optimization
Group Distributionally Robust Optimization (Group DRO) [50] is

an optimization framework that operates over predefined sam-

ple groups, aiming to achieve consistent and reliable performance

across them by emphasizing the optimizing of the worst-performing

group during training. It has been widely applied in various do-

mains [46, 50, 77] and has demonstrated strong effectiveness in

mitigating group disparities [25, 77] as well as reducing models’

reliance on shortcut correlations [13, 24]. Several studies have ap-

plied Group DRO to RS. For example, S-DRO [65] uses group DRO

to improve the experience of underrepresented user groups that

tend to engage with less popular items. PDRO [77] extends this

approach with popularity-aware mechanisms to prevent harming

the performance of popular items.

6 Conclusion
In this work, we identify a key limitation of supervised fine-tuning

(SFT) in LLM-based recommenders: it often induces Context Bias,
whereby the model over-relies on auxiliary tokens (e.g., task de-

scriptions and prefix-generated tokens) while underutilizing core

user interaction information. This bias undermines recommenda-

tion accuracy and raises unfairness concerns. To address this issue,

we introduce Group Distributionally Robust Optimization-based

Tuning (GDRT), which aims to reduce the model’s over-reliance

on auxiliary tokens by applying Group DRO across token groups

with varying degrees of relevance to auxiliary tokens. Extensive

experiments on multiple public datasets demonstrate that GDRT

effectively mitigates context bias, thereby significantly improving

recommendation accuracy and enhancing fairness.

This work investigates a novel form of bias introduced by the

integration of LLMs into recommenders, which is not present in

traditional recommendation models. A promising avenue for future

work is to examine whether LLM-based RS exhibit additional, as-yet

unidentified biases.
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A Appendices
A.1 Additional Validation of Context Bias

Across Prompt Templates and LLMs
In this section, to further rule out the potential influence of prompt

templates and different LLM backbones on the analysis of context

bias, we extend the FAA experiments described in Section 2.2.1 to

a broader range of prompt templates (see Figure 13) and LLM back-

bones (see Figure 14), beyond those used in the main experiments.

Specifically, for prompt templates, we adopt those proposed in [38]

and [3], which we refer to as Prompt1 and Prompt2, respectively.
For LLM backbones, we evaluate LLaMA3-8B [19] and Qwen2.5-

1.5B [55]. Across all prompt template and backbone configurations,

SFT consistently amplifies the ratio of attribution values between

auxiliary tokens and user-interaction tokens. This observation in-

dicates that context bias persistently exists across different prompt
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templates and LLM backbones. The underlying reason is that the

origin of context bias lies in the dataset itself: the co-occurrence

rate between auxiliary tokens and target item tokens is significantly

higher than that between interaction tokens and target item tokens,

as discussed in Section 2.2.3.

Figure 13: Ratio of attribution values between auxiliary to-
kens and user-interaction tokens before and after SFT across
different prompt templates.

Figure 14: Ratio of attribution values between auxiliary to-
kens and user-interaction tokens before and after SFT across
different LLMs.

A.2 Details of Baselines
The methods compared fall into several categories:

• Traditional RS (SASRec [30], SASRec++ [34], DROS [71]):
SASRec is a representative sequential recommendation model

that employs self-attention mechanisms to effectively capture

users’ dynamic interest patterns from historical interaction

sequences. Building upon SASRec, SASRec++ introduces an im-

proved training objective by adopting the softmax loss instead

of BCE loss used in original SASRec, which leads to more sta-

ble optimization and enhanced recommendation performance.

DROS incorporates Distributionally Robust Optimization (DRO)

into sequential recommendation, aiming to improve model ro-

bustness under distributional shifts.

• LLM-based RS (SFT [2], CFT [75], MSL [58], LLaRA [38],
A-LLM [32]): This line of work leverages the strong repre-

sentation and reasoning capabilities of LLMs for recommenda-

tion. SFT applies instruction-tuning strategies with carefully

designed templates to adapt LLMs to recommendation tasks.

CFT incorporates a causal loss to strengthen the behavior se-

quence modeling capabilities of LLMs. MSL improves the loss

function specifically tailoring it to optimize recommendation-

oriented objectives. LLaRA enhances LLM-based recommenders

by incorporating embeddings from traditional recommendation

models, enabling better exploitation of collaborative filtering

signals. A-LLM extends this idea by aligning these collaborative

embeddings with their corresponding textual semantics, facili-

tating more effective integration of structured and unstructured

information.

• Debiasing Methods for LLM-based RS (Reweight [29],
SPRec [21], D3 [3]): These methods focus on mitigating vari-

ous biases that arise when applying LLMs to recommendation.

Reweight addresses popularity bias by balancing recommen-

dations using pre-calculated item weights. SPRec proposes a

popularity-aware negative sampling strategy within Direct Pref-

erence Optimization (DPO) [48] to reduce popularity bias. D3

focuses on mitigating amplification bias during inference by

improving the decoding strategy, preventing the model from

over-recommending items whose textual representations con-

tain tokens with excessively high generation probabilities.

A.3 Additional Performance Comparison
Across Prompt Templates and LLMs

In this section, we present additional comparative experiments on

the performance of GDRT and SFT that go beyond the prompt

templates and LLM backbones used in the main experiments. As

summarized in Tables 4 and 5, GDRT consistently improves recom-

mendation accuracy while achieving substantial gains in fairness

across all evaluated configurations, demonstrating strong general-

ization ability over a broader range of prompts and LLMs.

Table 4: Performance comparison of SFT and GDRT across
different prompt templates. The best result is bolded.

Prompt Dataset Method NDCG@5 DGU@5

Prompt1 [38]

Toy

SFT 0.0118 0.6549

GDRT 0.0144 0.4616

Clothing

SFT 0.0033 0.4631

GDRT 0.0052 0.2025

Prompt2 [3]

Toy

SFT 0.0116 0.5765

GDRT 0.0136 0.3987

Clothing

SFT 0.0039 0.5231

GDRT 0.0045 0.1893

Table 5: Performance comparison of SFT and GDRT across
different LLMs. The best result is bolded.

LLM Dataset Method NDCG@5 DGU@5

Llama3-8B

Toy

SFT 0.0151 0.6861

GDRT 0.0173 0.5970

Clothing

SFT 0.0039 0.5801

GDRT 0.0062 0.2068

Qwen2.5-1.5B

Toy

SFT 0.0098 0.4849

GDRT 0.0117 0.2311

Clothing

SFT 0.0018 0.3538

GDRT 0.0026 0.0778
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A.4 The proof of Lemma 1
The original formulation of GDRT

L𝐺𝐷𝑅𝑇 =max

𝑄

𝐺∑︁
𝑔=1

𝑄 (𝑔)L(𝑔), s.t. 𝐷𝐾𝐿 (𝑄,𝑈 ) ≤ 𝜂, (6)

can be rewritten in the expectation form as

max

𝑄
E𝑔∼𝑄 [L(𝑔)]

𝑠 .𝑡 .E𝑔∼𝑄 [log
𝑄 (𝑔)
𝑈 (𝑔) ] ≤ 𝜂

(7)

In the following, we focus on how to eliminate the inner maxi-

mization optimization problem and the KL constraint term. As-

sume𝑊 (𝑔) = 𝑄 (𝑔)/𝑈 (𝑔) and define a convex function 𝜙 (𝑥) =

𝑥 log𝑥 − 𝑥 + 1. Then the divergence 𝐷𝐾𝐿 (𝑄,𝑈 ) can be written as

E𝑈 [𝜙 (𝑊 )]. The inner layer maximization optimization problem

can be reformulated as follow:

max

𝑊
E𝑈 [L𝑊 ]

s.t. E𝑈 [𝜙 (𝑊 )] ≤ 𝜂,E𝑈 [𝑊 ] = 1

(8)

As a convex optimization problem, we use the Lagrangian function

to solve it:

min

𝜏≥0,𝛽
max

𝑊
E𝑈 [L𝑊 ] − 𝜏 (E𝑈 [𝜙 (𝑊 )] − 𝜂) + 𝛽 (E𝑈 [𝑊 ] − 1)

= min

𝜏≥0,𝛽

{
𝜏𝜂 − 𝛽 + 𝜏 max

𝑊
E𝑈

[
L + 𝛽

𝜏
𝑊 − 𝜙 (𝑊 )

]}
= min

𝜏≥0,𝛽

{
𝜏𝜂 − 𝛽 + 𝜏E𝑈

[
max

𝑊

(
L + 𝛽

𝜏
𝑊 − 𝜙 (𝑊 )

)]} (9)

Notice that max𝑊

(
L+𝛽
𝜏

𝑊 − 𝜙 (𝑊 )
)
= 𝜙∗ ( L+𝛽

𝜏
) is the convex con-

jugate function of𝜙 (𝑥) and we have𝜙∗ (𝑥) = 𝑒𝑥−1.𝑊 (𝑔) = 𝑒
L(𝑔)+𝛽

𝜏

when the maximum value is obtained.

min

𝜏≥0,𝛽

{
𝜏𝜂 − 𝛽 + 𝜏E𝑈

[
max

𝑊

(
L + 𝛽

𝜏
𝑊 − 𝜙 (𝑊 )

)]}
= min

𝜏≥0,𝛽

{
𝜏𝜂 − 𝛽 + 𝜏E𝑈

[
𝑒

L+𝛽
𝜏 − 1

]}
=min

𝜏≥0

{
𝜏𝜂 + 𝜏 logE𝑈

[
𝑒

L
𝜏

]} (10)

where 𝛽 = −𝜏 logE𝑔∼𝑈
[
𝑒

L(𝑔)
𝜏

]
and𝑊 (𝑔) = 𝑒

L(𝑔)
𝜏

E𝑔′∼𝑈

[
𝑒
L(𝑔′ )

𝜏

] when the
minimum value is obtained. We consider the Lagrange multiplier 𝜏

as a hyperparameter related to the robustness radius 𝜂. Then we

can get the unconstrained optimization problem as follows,

L𝐺𝐷𝑅𝑇 = 𝜏𝜂 + 𝜏 logE𝑔∼𝑈 exp
(
L(𝑔)
𝜏

)
(11)

where the worst-case distribution

𝑄∗ (𝑔) =𝑈 (𝑔) exp (L(𝑔)/𝜏)
E𝑖∼𝑈 [exp(L(𝑖)/𝜏)] (12)

Since𝑈 is a uniform distribution

𝑄∗ (𝑔) = exp (L(𝑔)/𝜏)∑
𝑔′ [exp(L(𝑔′)/𝜏)] (13)

Thus lemma 1 is proven.
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