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Abstract
Click-through rate (CTR) prediction is a fundamental task in mod-
ern recommender systems. In recent years, the integration of large
language models (LLMs) has been shown to effectively enhance
the performance of traditional CTR methods. However, existing
LLM-enhanced methods often require extensive processing of de-
tailed textual descriptions for large-scale instances or user/item
entities, leading to substantial computational overhead. To address
this challenge, this work introduces LLaCTR, a novel and light-
weight LLM-enhanced CTR method that employs a field-level en-
hancement paradigm. Specifically, LLaCTR first utilizes LLMs to
distill crucial and lightweight semantic knowledge from small-scale
feature fields through self-supervised field-feature fine-tuning. Sub-
sequently, it leverages this field-level semantic knowledge to en-
hance both feature representation and feature interactions. In our
experiments, we integrate LLaCTR with six representative CTR
models across four datasets, demonstrating its superior perfor-
mance in terms of both effectiveness and efficiency compared to
existing LLM-enhanced methods. Our code is available at https:
//github.com/istarryn/LLaCTR.
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1 Introduction
Click-through rate (CTR) prediction [54] is a core task in mod-
ern recommender systems (RS) [5, 58], with the objective of esti-
mating the likelihood that a user will click on a specific item by
modeling complex feature interactions. With the advent of Large
Language Models (LLMs) and their remarkable abilities in content
comprehension and semantic reasoning [1, 11], there has been a
surge of interest in leveraging LLMs for CTR prediction. Recent
studies mainly explored two paradigms: 1) LLMs as CTR predic-
tors [3, 13, 14], where LLMs are either prompted or fine-tuned to
directly perform CTR prediction; 2) LLM-enhanced CTR models
[22, 36, 41, 51], where LLMs are leveraged to augment traditional
CTR models by injecting semantic knowledge.

Despite their encouraging performance, these approaches en-
counter significant practical limitations, particularly regarding com-
putational efficiency and economic feasibility. The high computa-
tional demands of LLMs make their direct deployment for online
CTR prediction largely impractical, as they introduce consider-
able inference latency that violates real-time serving requirements.
Although the second paradigm alleviates inference latency by re-
taining conventional CTR models for online serving, it still suffers
prohibitive training costs. Specifically, these methods typically oper-
ate at the instance level [22, 24, 41] or the user/item level [36, 50, 51],
requiring LLMs to process detailed textual descriptions for large-
scale data instances or user/item entities. Empirically, we find that
existing LLM-enhanced CTR methods (e.g., KAR[51], LLM-CF[41],
CTRL[22] and EASE [36]) require over 290 times (on average) more
computation time than baseline models on typical Amazon Video
Games and MovieLens-1M datasets with millions of interactions (cf.
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Figure 1: Empirical efficiency study on representative con-
ventional CTR models and LLM-enhanced CTR models. The
multiple increase in time cost is reported based on WuKong.

Figure 1). These challenges naturally motivate a critical research
question: How can we leverage LLMs to enhance CTR models in
a more efficient and cost-effective manner?

To address this challenge, we explore a novel field-level enhance-
ment paradigm that utilizes LLMs to extract semantic knowledge
from feature fields to enhance CTR models. As illustrated in Fig-
ure 2, fields denote categories of features in CTR prediction. This
paradigm offers two principal advantages: 1) Computational Ef-
ficiency: The number of fields is orders of magnitude lower than
that of instances or entities (e.g., hundreds vs. millions in the real
RS), yielding a drastic reduction in LLM computational overhead.
2) Crucial Semantic Information: Conventional CTR methods
primarily utilize field IDs as categorical indicators, often neglecting
the rich semantic information inherent in field descriptions. In fact,
field semantics can significantly enhance both feature representa-
tion and feature interaction modeling — the two core components
contributing the success of CTR prediction. For example, recog-
nizing that the feature “4.7” belongs to the field “average rating”
provides insight into item quality; understanding the relationship
between fields such as “user income” and “item price” can inform
the importance of feature interactions. Although field-level seman-
tic knowledge may not be as rich as cumbersome instance-level
semantic information, its conciseness and importance offer substan-
tial potential for improving model performance.

Motivated by these analyses, we introduce LLaCTR, a novel
Lightweight LLM-enhanced CTR method through field-level en-
hancement, comprising two key components:

• Self-supervised Field-feature Fine-tuning. While LLMs are
pre-trained on open-domain corpora, they may lack domain-
specific knowledge relevant to recommender systems. This limi-
tation can hinder the quality of the distilled field semantic knowl-
edge. To address this, we design a self-supervised task where the
LLM is prompted to predict the field to which a given feature
belongs. This fine-tuning leverages rich domain knowledge en-
coded in feature-field relationships, enabling the LLM to better
understand the field semantics. Notably, since the number of
fields is small and fine-tuning only requires a limited sample of
features, this approach is more efficient than directly extracting
instance or user/item-level knowledge as in prior work.
• Field Semantic-guided Enhancement. We further utilize the
field semantic knowledge (i.e., field semantic embeddings) dis-
tilled from LLMs to enhance traditional CTR models in two key
aspects: 1) field embeddings are utilized to guide the learning
of feature embeddings via a specific alignment loss, injecting
semantic knowledge into feature representations; 2) field em-
beddings are transformed into field interaction matrix through a
dedicated network to supplement and enhance feature interac-
tion modeling.
Notably, LLaCTR is both flexible and lightweight, allowing for

seamless integration into existing CTR models as a plug-and-play
enhancement. In our experiments, we incorporate LLaCTR into six
conventional CTR methods and observe significant performance
improvements across four real-world datasets (with an average
increase of 2.24%). Moreover, LLaCTR outperforms recent LLM-
enhanced methods while incurring substantially lower computa-
tional overhead (by a factor of 10–100 times).

Overall, this work makes the following contributions:

• We identify the limitations of existing LLM-based CTR methods
and advocate for leveraging field-level semantic knowledge to
efficiently enhance traditional CTR models.
• We propose a novel LLM-enhanced CTR method, LLaCTR, which
employs self-supervised fine-tuning to distill high-quality field
knowledge from LLMs and integrates this knowledge to improve
both feature representation and feature interaction modeling.
• We conduct extensive experiments to demonstrate that LLaCTR
significantly improves the accuracy of traditional CTR models
while being highly efficient and cost-effective.

2 Preliminaries
2.1 Task Formulation
This work focuses on click-through rate (CTR) prediction [25, 47],
a core task in many personalized services (e.g., recommender sys-
tems). LetD = {(X𝑖 , 𝑦𝑖 )}𝑁𝑖=1 denote the training dataset of user-item
historical interaction records, where X𝑖 = [x𝑖1, x𝑖2, . . . , x𝑖𝐾 ] repre-
sents the input features across 𝐾-field for the 𝑖-th instance, and x𝑖𝑘
denotes the feature of the 𝑘-th field for the instance. In general, x𝑖𝑘
is a vector that can represent categorical, multi-valued, numerical
features, etc. The label 𝑦𝑖 ∈ {1, 0} indicates whether the user has
clicked on the item in this instance. The goal of CTR is to learn a
model from D that can accurately predict the click probability of a
new instance.
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Figure 2: Current LLM-enhanced CTR paradigm versus our field-level enhancement paradigm.

2.2 Traditional CTR Models
Traditional CTR models [15, 34, 35, 38, 40, 56] primarily adopt deep
learning paradigms and can generally be abstracted into three core
components:

1) Feature Embedding Layer. Given the high-dimensional and
sparse nature of raw input features, feature embedding is commonly
employed to map the raw features into dense representations:

E𝑖 = EmbeddingLayer(X𝑖 ), (1)

where E𝑖 = [e𝑖1, e𝑖2, . . . , e𝑖𝐾 ] ∈ R𝐾×𝐷 represents the learned feature
embeddings of the instanceX𝑖 , with e𝑖𝑘 denoting the D-dimensional
embedding vector for 𝑘-th field feature.

2) Feature Interaction Layer. This crucial component is designed
to effectively capture the complex feature interactions:

Φ(X𝑖 ) = FeatureInteraction(X𝑖 , E𝑖 ), (2)

where Φ(·) is the hidden representation learned from feature in-
teractions. Among various architectures, the most representative
one is the factorization machine (FM) [38], which explicitly model
bi-level feature interactions:

Φ𝐹𝑀 (X𝑖 ) = 𝑤0 +
𝐾∑︁
𝑘=1

w𝑘𝑇 x𝑖𝑘 +
𝐾∑︁
𝑘=1

𝐾∑︁
𝑙=𝑘+1

𝜍 (x𝑖𝑘x𝑖𝑙𝑇 <e𝑖𝑘 , e𝑖𝑙>), (3)

where𝑤0,w𝑘 denotes the learnable weights, and < ·, · > denotes
the inner product of two vectors; 𝜍 (.) denotes the sum of all ele-
ments in the matrix. For convenience, here we adopt vector notation
to represent the formula of Factorization Machines (FM), which is
mathematically equivalent to the original formulation presented in
[38]. The features are explicitly bi-level interacted with x𝑖𝑘x𝑖𝑙𝑇 and
its contribution is controlled by their embeddings <e𝑖𝑘 , e𝑖𝑙>.

Building on FM, recent works have explored various extensions
[32, 42, 52], such as introducing field-aware matrices [19, 35, 40]
or incorporating neural layers [15, 57]. Meanwhile, other studies
have proposed novel architectures, such as convolution operator
[23, 28] and self-attention [59, 60], to better capture complex feature
interactions.

3) Prediction Layer. Finally, the prediction layer transforms Φ(X𝑖 )
into the model prediction 𝑦𝑖 :

𝑦𝑖 = 𝜎 [PredictionLayer(Φ(X𝑖 ))], (4)

where 𝜎 (·) is the sigmoid function. The model is typically optimized
with the binary cross-entropy (BCE) loss [33] with:

L𝐵𝐶𝐸 (𝑦,𝑦) = −
1
𝑁

𝑁∑︁
𝑖=1
[𝑦𝑖 log (𝑦𝑖 ) + (1 − 𝑦𝑖 ) log (1 − 𝑦𝑖 )] , (5)

While these traditional CTRmodels havemade significant progress
in the past few decades, they often suffer from the semantic infor-
mation loss. Specifically, some methods rely solely on field IDs as
categorical indicators [19, 35, 40], neglecting the rich semantic in-
formation in field descriptions. This limitation motivates our use of
LLMs to enhance traditional CTR models with field-level semantic
knowledge.

2.3 LLM-enhanced CTR Models
To fully exploit semantic knowledge, LLMs have been extensively
investigated for enhancing traditional CTR models. As illustrated in
Figure 2, existing LLM-enhanced CTR methods primarily operate
at the instance level or user/item level. Typically, these approaches
first organize the features of users, items, or instances into textual
descriptions, which are then provided as prompts to the LLM for
reasoning or summarization. The resulting semantic knowledge,
often at the user/item or instance level, is further encoded into
semantic embeddings to augment traditional CTR models.

However, due to the large scale of users/items and instances in
real-world applications, such strategies incur prohibitive compu-
tational costs during training, inference and encoding. For exam-
ple, on representative datasets such as Amazon Video Games and
MovieLens-1M, the total training time of existing LLM-enhanced
CTR methods (e.g., KAR [51], LLM-CF [41], CTRL [22] and EASE
[36]) is over 290 times (on average) that of standard CTR models
on average (as shown in Figure 1). Moreover, the complex and volu-
minous semantic knowledge generated at the user/item or instance
level is often difficult for traditional CTR models to effectively



WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Cui et al.

LLM CTR Model

SSFT

FRE FIE

LoRA

Instruction: “Given a feature, please answer

which field it belongs to.”
Input: “The feature is: Black Rose.”

Output: “Title”.

Fine-tuningSelf-supervised

Fields Encoding

⋮

“UserID” 𝒉1
“ItemID” 𝒉2

⋮
“Title” 𝒉K

Embeddings

⋮

Softmax
𝑘ℒ𝐾𝐿 = 𝔻𝐾𝐿(𝒆𝑖k ∥ 𝒉′ )

Softmax

Feature embeddings

𝒆𝑖1
𝒆𝑖2
⋮

𝒆𝑖k

Adaptor

Interactions A
d
aptor

Feature
Interaction

Matrix

Enhanced
Interaction

Matrix

Decrease ↓

⋮

ΦFIE

+

Σ

Φ𝐶𝑇𝑅

Σ

Field 
Interaction
Knowledge

CTR Prediction

⋮

⋮

Increase ↑

ෝ𝒚
Feature

Interaction
Layer

Figure 3: The overall framework of proposed LLaCTR.

assimilate and utilize. Given these limitations, it is imperative to
explore new paradigms for integrating semantic knowledge into
CTR models.

3 Methodology
In this section, we introduce LLaCTR, which enhances CTR predic-
tion through field-level semantic knowledge from LLMs. As shown
in Figure 3, LLaCTR first employs self-supervised field-feature fine-
tuning to improve LLMs’ ability to capture field semantics (SSFT),
and then leverages the field knowledge distilled from LLMs to en-
hance both feature representation (FRE) and feature interactions
(FIE).

3.1 Self-supervised Field-feature Fine-tuning
(SSFT)

LLMs are pre-trained on open-domain natural language corpora
[1, 11], which often lack domain-specific knowledge relevant to
CTR prediction. This limitation can hinder their ability to distill
high-quality field semantic knowledge. Specifically, LLMs may not
fully understand the meaning of field descriptions in CTR tasks
or their relationships with features. To address this, we propose a
self-supervised fine-tuning strategy that prompts LLMs to predict
the field to which a given feature belongs, thereby enhancing their
understanding of field semantics.

Specifically, let 𝐹𝑘 represent the descriptions of the 𝑘-th field,
and 𝑓 𝑘𝑗 denote the description of the 𝑗-th feature within field 𝑘 . As
shown in Figure 4, we construct self-supervised training instances
(P(𝑓 𝑘𝑗 ), 𝐹𝑘 ), where P(𝑓 𝑘𝑗 ) is a prompt containing the task descrip-
tion, feature descriptions, and candidate field descriptions, and 𝐹𝑘
denotes the 𝑘-th field description as the target response. These
prompt-response pairs are used to fine-tune LLMs with language
generative loss:

L𝐿𝐺 (P(𝑓 𝑘𝑗 ), 𝐹𝑘 ;𝜃 ) = − log 𝑃𝐿𝐿𝑀
(
𝐹𝑘 | P(𝑓 𝑘𝑗 )

)
, (6)

where 𝑃𝐿𝐿𝑀
(
𝐹𝑘 | P(𝑓 𝑘𝑗 )

)
represents the LLM’s probability of gen-

erating the correct field description 𝐹𝑘 given the prompt P(𝑓 𝑘𝑗 ).

Template of Self-supervised Instruction Tuning

Instruction:

The feature is: “Black Rose”. The candidate set is: [User ID, 

Gender, Age, Occupation, Movie ID,  Movie Title, … ]. 

Output:  Movie Title. 

Feature Name Field Candidate Set Field Name

Given a feature, please answer which field it belongs to. 
Please select the field name from the candidate set.

Input: 

Figure 4: The template of self-supervised fine-tuning.

This loss improves the LLM’s ability to capture field-feature corre-
lations, injecting domain knowledge and enabling the generation
of higher-quality semantic representations.

Besides the language generative loss, we find the contrastive loss
[16] is also effective:

L𝐶𝐿 (P (𝑓 𝑘𝑗 ), 𝐹𝑘 ;𝜃 ) = − log
exp(𝑐𝑜𝑠 (E (P (𝑓 𝑘

𝑗
) ), E(𝐹𝑘 ) )/𝜏 )∑

𝑙 exp(𝑐𝑜𝑠 (E (P (𝑓 𝑘𝑗 ) ), E(𝐹𝑙 ) )/𝜏 )
, (7)

where 𝑐𝑜𝑠 (·) denotes the cosine similarity function, 𝜏 is the temper-
ature parameter and E(·) are the LLM’s encodings of the language
descriptions, respectively.

The contrastive loss is designed to align the semantic embeddings
of prompts with their corresponding answers, thereby effectively
injecting feature-field correlation knowledge in embeddings. Since
the contrastive loss operates directly on embeddings, which are sub-
sequently used to enhance CTRmodels, this work prioritizes the use
of contrastive loss and empirically find slightly better performance
than generative loss (see Appendix B.2.1 for details).

After fine-tuning, the LLM’s encodings of field descriptions are
extracted:

h𝑘 = E(𝐹𝑘 ) . (8)
For convenience, we collect the field embeddings as a matrix H =

{h𝑘 }𝐾𝑘=1. These field embeddings will further utilized to enhance
traditional CTR models.

Notably, such field-level operations are highly efficient, as the
LLMs require to process only a small number of fields (typically
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less than 100) rather than millions of instances or user/item pairs in
the experimental datasets. Some readers may be concerned about
the potential inefficiency of self-supervised fine-tuning. However,
this process is also lightweight, as it only requires sampling a small
number of features per field for training. For example, sampling
just 500 features per field is sufficient to achieve significantly better
performance compared to recent LLM-enhanced methods, while in-
curring substantially lower training time. Empirical comparisons of
efficiency can be found in Figure 5. The detailed time efficiency anal-
yses of LLaCTR and other LLM-enhanced baselines are provided in
Section 4.2.2.

3.2 Feature Representation Enhancement (FRE)
The quality of feature representations is critical for the success
of CTR models. However, existing methods often overlook the
semantic knowledge contained in field descriptions [24, 51]. To
address this, we transfer the field semantic knowledge distilled
from LLMs to enhance feature embeddings.

Given the embedding space gap between LLMs and CTR models,
we first map original field embeddings ℎ𝑘 into the embedding space
of CTR models using a learnable adaptor:

h
′
𝑘 = Adaptor(h𝑘 ), (9)

where Adaptor(·) can be implemented as a simple linear transfor-
mation.We then align feature embeddings with their corresponding
field embeddings through normalized KL-divergence [43]:

h
′
𝑘
← Softmax(h′

𝑘
), e𝑖𝑘 ← Softmax(e𝑖𝑘 ), (10)

L𝐾𝐿 =

𝐾∑︁
𝑘=1

𝑁∑︁
𝑖=1

DKL (e𝑖𝑘 , h
′
𝑘 ) =

𝐾∑︁
𝑘=1

𝑁∑︁
𝑖=1

e𝑖𝑘 · ln(e𝑖𝑘/h
′
𝑘 ) . (11)

Specifically, here we employ normalized KL-divergence, as it elimi-
nates the influence of embeddingmagnitude and focuses on aligning
the underlying distributions. We also experimented with other com-
monly used alignment losses, such as contrastive loss, but found
that normalized KL-divergence consistently yields superior perfor-
mance (see Appendix B.2.2 for details). By minimizing L𝐾𝐿 , feature
embeddings are able to absorb semantic knowledge from the field
embeddings, resulting in higher-quality representations. Intuitively,
the field semantic embeddings serve as prototypes, encouraging the
feature embeddings close to these semantic centers during training.

The overall training objective combines semantic alignment with
the original CTR objective:

L = L𝐵𝐶𝐸 + 𝜆𝑘𝑙L𝐾𝐿, (12)

where hyperparameter 𝜆𝑘𝑙 balances their contributions.

3.3 Feature Interaction Enhancement (FIE)
Field information has been shown beneficial to improve feature
interaction modeling in CTR tasks [19, 38, 40]. However, these tra-
ditional method only utilize field ID information by employing
implicit embedding layers [19] or learnable parameters matrices
[38, 40], without taking the textual information of fields into ac-
count. Field semantic information provides new insights into fea-
ture interactions. For example, semantically, interactions between
the features belonging to "user income" and "item price" are likely
highly useful for click prediction.

Table 1: Statistics of the datasets.

Dataset Gift Cards Video Games Digital Music MovieLens-1M

#Field 13 13 13 8
#Feature 1,981,330 60,119,995 1,695,642 9,001,881
#User 132,732 2,766,656 100,952 6,040
#Item 1,137 137,249 70,511 3,706

#Interaction 152,410 4,624,615 130,434 1,000,209
Density 1.01 × 10−3 1.22 × 10−5 1.83 × 10−5 4.47 × 10−2

To leverage this insight, we first compute the importance of fea-
ture interactions of two fields based on their semantic embeddings:

𝑚𝐹
𝑖 𝑗 = FieldInteraction(h𝑖 , h𝑗 ), (13)

where FieldInteraction(·) denotes the field interaction layer, which
can be implemented by various architecture. In practice, we find
that cosine similarity is effective — intuitively, the fields with similar
semantic may provide more insights on prediction. For convenience,
we collect all pairwise field interaction scores into a matrix M𝐹 .
Subsequently, we employ a learnable adaptor to re-scale these im-
portance scores, i.e., M′ = Adaptor(M𝐹 ), where the adaptor can be
simply implemented via a linear layer.

The field-aware importance scores derived from semantic embed-
dings are then utilized to guide the learning of feature interactions.
Specifically, we explicitly incorporate these scores into a bi-level
feature interaction modeling, thereby enhancing the feature inter-
action layer of CTR methods:

Φ𝑛𝑒𝑤 (X𝑖 ) = Φ(X𝑖 ) + 𝜆𝑓𝑚 ·
𝐾∑︁
𝑘=1

𝐾∑︁
𝑙=𝑘+1

𝜍 (x𝑖𝑘x𝑖𝑙𝑇 <e𝑖𝑘 , e𝑖𝑙𝑇 >𝑚
′
𝑘𝑙 ), (14)

where the field-aware importance score𝑚′
𝑘𝑙
modulates the strength

of feature interactions. Here, we augment the original feature inter-
action layer by integrating an additional field-aware feature inter-
action component, with 𝜆𝑓𝑚 controlling the relative contribution
of the two components.

Notably, our proposed feature interaction enhancement strategy
can be seamlessly integrated into a wide range of existing CTR
models. This generality motivates our approach of introducing a
supplementary field-aware feature interaction component, rather
than modifying the inherent feature interaction architecture of each
model. In our experiments, we incorporate our LLaCTR module
into six representative CTR methods, and observe substantial per-
formance improvements across almost all cases. Detailed results are
presented in Section 4, and the implementation details are provided
in the Appendix A.

4 Experiments
We aim to answer the following research questions:
• RQ1 : How does LLaCTR perform compared with the state-of-
the-art CTR methods?
• RQ2 : How is the efficiency of LLaCTR compared with existing
LLM-enhanced CTR methods?
• RQ3 : What are the impacts of different components of LLaCTR?

4.1 Experimental Setup
4.1.1 Datasets. Following previous work [24, 51], we conduct ex-
periments on four widely used public datasets in LLM-enhanced
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Table 2: Performance comparisons of LLaCTR with existing PLM/LLM-enhanced methods. The results of PLM-enhanced
methods are reported on their best backbones. The best result is bolded and the blue-colored zone indicates that LLaCTR is
better than the basic CTR backbone. The mark "*" indicates the improvement is statistically significant (𝑝-value < 0.05).

Gift Cards Video Games Digital Music MovieLens-1M
Method Logloss ↓ AUC ↑ RelaImpr Logloss ↓ AUC ↑ RelaImpr Logloss ↓ AUC ↑ RelaImpr Logloss ↓ AUC ↑ RelaImpr

CELA 0.4658 0.6746 1.02% 0.5798 0.6775 0.44% 0.3364 0.7638 0.37% 0.4031 0.8373 0.24%
ClickPrompt 0.4656 0.6754 1.48% 0.5747 0.6799 1.79% 0.3356 0.7652 0.90% 0.4025 0.8379 0.42%

Base 0.4606 0.6621 0.5805 0.6673 0.3359 0.7612 0.4081 0.8354
KAR 0.4551 0.6643 1.34% 0.5803 0.6705 1.93% 0.3410 0.7607 -0.21% 0.4073 0.8358 0.13%

LLM-CF 0.4580 0.6666 2.77% 0.5805 0.6682 0.58% 0.3351 0.7633 0.78% 0.4128 0.8337 -0.50%
CTRL 0.4595 0.6636 0.93% 0.5802 0.6708 2.13% 0.3360 0.7611 -0.04% 0.4128 0.8336 -0.53%
EASE 0.4534 0.6667 2.84% 0.5804 0.6701 1.69% 0.3359 0.7625 0.48% 0.4101 0.8357 0.10%

FM

LLaCTR 0.4500 0.6673 3.21%* 0.5801 0.6718 2.70%* 0.3362 0.7621 0.32% 0.4050 0.8364 0.30%*

Base 0.4751 0.6713 0.5762 0.6692 0.3478 0.7582 0.4190 0.8342
KAR 0.4753 0.6778 3.80% 0.5871 0.6720 1.65% 0.3439 0.7587 0.18% 0.4207 0.8335 -0.20%

LLM-CF 0.4723 0.6736 1.36% 0.5769 0.6730 2.28% 0.3441 0.7588 0.21% 0.4140 0.8353 0.34%
CTRL 0.4746 0.6744 1.83% 0.5757 0.6758 3.92% 0.3432 0.7576 -0.26% 0.4142 0.8352 0.31%
EASE 0.4748 0.6739 1.52% 0.5807 0.6738 2.74% 0.3360 0.7604 0.83% 0.4180 0.8349 0.22%

DeepFM

LLaCTR 0.4657 0.6797 4.90%* 0.5834 0.6744 3.10%* 0.3350 0.7687 4.06%* 0.4049 0.8354 0.38%*

Base 0.4664 0.6691 0.5762 0.6683 0.3420 0.7553 0.4017 0.8365
KAR 0.4661 0.6694 0.19% 0.5791 0.6741 3.42% 0.3432 0.7575 0.88% 0.4020 0.8360 -0.15%

LLM-CF 0.4672 0.6698 0.47% 0.5806 0.6702 1.13% 0.3397 0.7567 0.57% 0.4044 0.8371 0.18%
CTRL 0.4679 0.6699 0.50% 0.5776 0.6755 4.28% 0.3414 0.7561 0.33% 0.4004 0.8372 0.21%
EASE 0.4661 0.6703 0.74% 0.5795 0.6765 4.84% 0.3415 0.7571 0.71% 0.4030 0.8369 0.12%

FwFM

LLaCTR 0.4659 0.6718 1.61%* 0.5827 0.6780 5.73%* 0.3362 0.7585 1.27%* 0.4014 0.8367 0.05%

Base 0.4579 0.6747 0.5824 0.6706 0.3315 0.7628 0.4077 0.8325
KAR 0.4595 0.6754 0.42% 0.5767 0.6711 0.29% 0.3347 0.7640 0.43% 0.4062 0.8332 0.21%

LLM-CF 0.4652 0.6740 -0.43% 0.5877 0.6709 0.20% 0.3317 0.7627 -0.04% 0.4066 0.8329 0.11%
CTRL 0.4593 0.6751 0.21% 0.5826 0.6714 0.47% 0.3310 0.7650 0.82% 0.4059 0.8332 0.21%
EASE 0.4590 0.6753 0.33% 0.5750 0.6729 1.35% 0.3311 0.7637 0.33% 0.4056 0.8334 0.27%

FmFM

LLaCTR 0.4560 0.6761 0.78%* 0.5725 0.6765 3.45%* 0.3323 0.7615 -0.50% 0.4055 0.8335 0.30%*

Base 0.4774 0.6720 0.5830 0.6761 0.3423 0.7557 0.4086 0.8301
KAR 0.4881 0.6726 0.35% 0.5820 0.6817 3.19% 0.3429 0.7546 -0.41% 0.4094 0.8290 -0.33%

LLM-CF 0.4781 0.6731 0.62% 0.5845 0.6785 1.36% 0.3369 0.7560 0.13% 0.4041 0.8299 -0.06%
CTRL 0.4719 0.6781 3.55% 0.5835 0.6790 1.65% 0.3399 0.7561 0.15% 0.4033 0.8328 0.82%
EASE 0.4773 0.6736 0.93% 0.5776 0.6796 1.97% 0.3414 0.7560 0.12% 0.4049 0.8309 0.24%

FinalMLP

LLaCTR 0.4717 0.6818 5.71%* 0.5738 0.6832 4.02%* 0.3411 0.7552 -0.19% 0.4009 0.8340 1.18%*

Base 0.4755 0.6728 0.5819 0.6767 0.3402 0.7514 0.4088 0.8323
KAR 0.4794 0.6721 -0.43% 0.5927 0.6758 -0.53% 0.3429 0.7506 -0.31% 0.4099 0.8316 -0.21%

LLM-CF 0.4756 0.6752 1.36% 0.5805 0.6788 1.15% 0.3379 0.7560 1.83% 0.4084 0.8293 -0.90%
CTRL 0.4753 0.6769 2.37% 0.5792 0.6800 1.84% 0.3399 0.7561 1.85% 0.4029 0.8367 1.31%
EASE 0.4748 0.6758 1.71% 0.5783 0.6801 1.91% 0.3381 0.7556 1.67% 0.4031 0.8334 0.33%

WuKong

LLaCTR 0.4745 0.6802 4.24%* 0.5763 0.6819 2.91%* 0.3377 0.7564 1.99%* 0.4027 0.8397 2.21%*

Average RelaImpr 3.41% 3.65% 1.16% 0.74%

CTR task:Amazon Gift Cards,Amazon Video Games,Amazon Digital
Music and MovieLens-1M.
• AmazonReviewDatasets1 arewell-known e-commercial datasets
[2, 22, 24, 41] with ratings ranging from 1 to 5. Following [24],
we binarize the ratings with a threshold of 4 and use the 5-core
setting, i.e., all users and items have at least 5 interactions.
• MovieLens-1M Dataset2 is a benchmark movie recommenda-
tion dataset from Movielens with ratings ranging from 1 to 5.
We binarize the ratings with a threshold of 4, while removing
neutral samples with ratings equal to 3 following [22].

1https://amazon-reviews-2023.github.io/
2https://grouplens.org/datasets/MovieLens/1m/

The dataset statistics are summarized in Table 1. Following [22, 24],
we organize the review behaviors in ascending order of timestamps
to partition each dataset into training, validation, and testing sets
with ratios of 8:1:1 after preprocessing.

4.1.2 Evaluation Metrics. Following previous work [24, 39], we
employ two widely-used metrics LogLoss (binary cross-entropy
loss) andAUC (area under the ROC curve) to evaluate performance.
The RelaImpr [53] (relative AUC improvement) is also reported.
Notably, slightly higher AUC or lower LogLoss (e.g., 0.1%) can be
regarded as significant improvement in CTR prediction, as indicated
by previous studies [18, 39].

4.1.3 Baselines. For comparisons, we selected KAR (RecSys’24)
[51], LLM-CF (CIKM’24) [41], CTRL (TORS’23) [22] and EASE

https://amazon-reviews-2023.github.io/
https://grouplens.org/datasets/MovieLens/1m/


Field Matters: A Lightweight LLM-enhanced Method for CTR Prediction WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

102 103 104 105

Total Training time (s)

0.670

0.674

0.678

0.682

0.686

AU
C

Video Games

DeepFM
FmFM
WuKong
Ours (w/o FT)
Ours (sam-num=100)
Ours (sam-num=500)

Ours (sam-num=1000)
CTRL
EASE
KAR
LLM-CF

102 103 104

Total Training Time (s)
0.832

0.834

0.836

0.838

0.840

AU
C

MovieLens-1M

DeepFM
WuKong
FmFM
Ours (w/o FT)
Ours (sam-num=100)
Ours (sam-num=500)

Ours (sam-num=1000)
CTRL
KAR
EASE
LLM-CF

Figure 5: AUC and training time of compared methods. The “sam-num” is the sampling feature number of each field, and "w/o
FT" represents fine-tuning has been removed.

(CIKM’24) [36] as LLM-enhanced baselines. These baselines are
closely related and representative LLM-enhanced CTRmethods. We
also include two representative PLM-enhanced methods — CELA
(arXiv’24) [50] and ClickPrompt (WWW’24) [24] for comparisons.

We integrated these baseline methods into the following repre-
sentative traditional CTR models: 1) Classic FM-based methods:
FM (ICDM’10) [38] and DeepFM (IJCAI’17) [15]; 2) Field-based
CTRmethods: FwFM (WWW’18) [35] and FmFM (WWW’21) [40];
3) The state-of-the-art CTR methods: FinalMLP (AAAI’23) [34]
and WuKong (ICML’24) [56]. The readers may refer to Appendix A
for more details about these methods.

4.1.4 Implementation Details. We use the Adam [20] optimizer to
train all the CTR models. The learning rate (lr) is set as 0.001 and
the weight decay (wd) is tuned in {1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 0}. We
fix the feature embedding size to 32 and batch size to 4096 for all the
backbones and datasets. For all compared methods, we closely refer
to the configurations provided in their respective publications to
ensure their optimal performance. For LLaCTR fine-tuning, we fix
the batch size as 128, the learning rate of LLM as 1e-4 and rank of
LoRA [17] as 8, respectively. During LLaCTR enhancement, the 𝜆𝑘𝑙
and 𝜆𝑓𝑚 are tuned in {0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1}.We set the feature
sampling number as 1000 by default, and set temperature parameter
𝜏 of contrastive loss into 0.02 following previous work [48]. All
methods are implemented in PyTorch and run on 8 Nvidia A800
GPUs. More implementation details are provided in the Appendix A.

4.2 Experimental Results
In this section, we focus on performance comparison, efficiency
analysis, and ablation studies. Additional results, including time
complexity analysis, hyperparameter sensitivity analysis and more
details, are provided in Appendix B.

4.2.1 Performance Comparison (RQ1). Table 2 shows the perfor-
mance comparison of the proposed LLaCTR against the baseline
methods. We observe that:

Comparing with traditional CTR models. LLaCTR can be
applied to various types of basic CTRmodels, and yield performance
gains in most cases. The improvements brought by LLaCTR are
impressive, achieving an average AUC relative improvement of
2.24% over all basic CTR models across four datasets. These results

demonstrate the effectiveness of LLaCTR by injecting field semantic
knowledge.

Comparing with PLM/LLM-enhanced CTR models. We ob-
serve that LLaCTR outperforms two representative PLM-enhanced
CTR models (CELA and ClickPrompt) and four LLM-enhanced
CTR models (KAR, LLM-CF, CTRL and EASE) in most cases (89%),
which validates the effectiveness of our field-level enhancement
paradigm. This result is highly surprising, as we only utilize the
lightweight field knowledge rather than the cumbersome instance-
level (or user/item-level) knowledge utilized by recent work. The
reasons may be 1) field knowledge is indeed important and helpful
for CTR prediction; 2) the lightweight field knowledge has been
effectively exploited, enhancing both feature representation and
feature interactions.

4.2.2 Efficiency Analysis (RQ2). In this section, we conduct an in-
depth analysis on the training efficiency of different LLM-enhanced
CTR methods. In terms of inference efficiency, since all these meth-
ods pre-store LLM knowledge and ultimately depend on CTR mod-
els for recommendations, the variation is much smaller than that
observed during training (cf. Table 8 in Appendix B.3).

The AUC performance and the total training time of compared
methods are shown in Figure 5. The performances of LLM-enhanced
methods are reported on their best backbones. We observe: 1) Com-
pared to three representative LLM-enhanced methods, LLaCTR can
improve efficiency by 10-100x and achieve better performance. 2)
With the increase of the sampling number in the SSFT module,
both the training time and AUC of LLaCTR will increase. This in-
dicates increasing the number of samples used for self-supervised
learning can yield higher-quality field semantic knowledge, but
require more training time. 3) Even without fine-tuning, LLaCTR
still achieves decent results. This suggests our LLaCTR could be
applied in resource-constrained scenarios, enhancing existing CTR
methods with incurring limited additional time cost. Besides, we
also study the efficiency bottleneck and the time complexity of these
LLM-enhanced methods, the readers may refer to Appendix B.1 for
more details.
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Table 3: Ablation study on DeepFM and WuKong. Results on
the other backbones are shown in Appendix B.4.

Method Gift Games Music Movie

DeepFM

Base 0.6713 0.6692 0.7582 0.8342
w/o FT 0.6759 0.6732 0.7683 0.8352
w/o 𝜆𝑘𝑙 0.6764 0.6699 0.7582 0.8343
w/o 𝜆𝑓𝑚 0.6787 0.6741 0.7685 0.8351
LLaCTR 0.6797 0.6744 0.7687 0.8354

WuKong

Base 0.6728 0.6767 0.7514 0.8323
w/o FT 0.6800 0.6777 0.7558 0.8322
w/o 𝜆𝑘𝑙 0.6730 0.6784 0.7524 0.8332
w/o 𝜆𝑓𝑚 0.6763 0.6783 0.7494 0.8347
LLaCTR 0.6802 0.6819 0.7564 0.8397

4.2.3 Ablation Study (RQ3). We further conduct the ablation study,
where the Self-supervised Fine-tuning (SSFT) module, Feature Rep-
resentation Enhancement (FRE) module or Feature Interaction En-
hancement (FIE) module is removed respectively. The results are
presented in Table 3. As can be seen, both the three components are
important — removing SSFT, FRE or the FIE module would result
in performance drops in most case. Delving deeper into the SSFT
module, we observe that self-supervised field-feature fine-tuning
on LLMs is indeed helpful. The field description encoded by the
fine-tuned LLM has higher quality than that extracted from the
pre-trained corpus. For FRE module, we observe that the developed
KL-Divergence loss is also important. It can effectively inject se-
mantic knowledge of fields into the feature representations. For
FIE module, we find that for both explicit feature modeling and
implicit feature modeling CTR methods, injecting field interaction
scores can effectively guide feature interaction and bring AUC
improvement.

5 Related Work
5.1 Traditional CTR Prediction
CTR prediction is a core functional module in personalized on-
line services, where the key idea is to capture feature interaction
patterns that capture the combinational relationships among mul-
tiple features. Traditional methods employ various operations for
feature interaction, including product-based operators [6, 49], con-
volutional networks [30], and attention mechanisms [18]. Recently,
field-aware CTR methods [35, 40] have gained attention, though
they primarily rely on field IDs as categorical indicators without
fully leveraging the semantic richness of field descriptions.

5.2 LLMs as CTR predictors
Initial efforts explored the pre-trained language models as CTR pre-
dictors by reformulating recommendation tasks as NLP problems
[9, 14, 29]. With the advent of LLMs in content comprehension
and semantic reasoning [1, 11], LLMs have demonstrated strong
potential in CTR prediction [3, 4]. However, LLMs suffer from high
inference latency and resource demands. While acceleration tech-
niques exist (e.g., BAHE [13] for parameter reduction, Rella [26]
for sequence shortening), their computational overhead remains
prohibitive for real-world deployment due to massive model sizes.

5.3 LLM-enhanced CTR Prediction
To address the efficiency challenges inherent in LLM-based CTR
predictors, the LLM-enhanced CTR paradigm has been extensively
investigated as an alternative approach. This paradigm primarily
focuses on leveraging the powerful semantic encoding and knowl-
edge reasoning capabilities of LLMs to enhance traditional CTR
models [22, 36]. For example, KAR [51] leverages LLMs to enhance
the knowledge of users and items. LLM-CF [41] uses LLMs to gener-
ate chains of thought (CoT) for enhancement. CTRL [22] utilizes the
LLM as the feature encoder for instances and uses contrastive learn-
ing to align the knowledge. EASE [36] trains a semantic adaptor to
align item embeddings with LLM. Other work also focuses on spe-
cific CTR scenarios, such as cross-domain[12] and interpretability
[55]. Despite their promising performance, they involve enhance-
ments at the instance-level or user/item-level, which results in
great inefficiency issue in dealing with large-scale instances or en-
tities in practice. Our approach is applied on the more efficient and
cost-effective field-level, without incurring superabundant compu-
tational overhead.

5.4 Other Related Work
There are also two related topics: 1) PLM-enhanced CTR meth-
ods: Early studies have leveraged pretrained language models
(PLMs, such as BERT [10]) to enhance CTR models, e.g., CELA [50]
pretrains PLMs on item features and aligns them with ID embed-
dings for enhancement. ClickPrompt [24] uses the ID embeddings as
prefix soft tokens in PLMs for generating instance-level knowledge.
However, the capacity of early PLMs is generally inferior to that of
recent LLMs, and recent studies have demonstrated the superior per-
formance of LLM-enhanced methods. Consequently, our work aims
to further investigate and advance the LLM-enhanced CTR model-
ing. 2) LLM-enhanced recommendation: Recent years have also
witnessed the integration of LLMs on other recommendation tasks
[7, 44, 45], e.g., sequential recommendation [8, 46], collaborative
filtering [27, 37]. Notably, CTR prediction differs from these tasks in
that it typically involves various features and emphasizes modeling
feature interactions. Thus, our LLaCTR is specifically designed to
improve feature representation and interactions in CTR prediction.

6 Conclusion
This work proposes a lightweightmethod, LLaCTR, which leverages
LLMs to extract semantic knowledge from feature fields for enhanc-
ing CTR models. Specifically, LLaCTR employs a self-supervised
field-feature fine-tuning to distill high-quality field-level knowledge,
which is subsequently utilized to improve both feature represen-
tation and feature interaction modeling. Extensive experiments
demonstrate the superiority of LLaCTR in both predictive accuracy
and computational efficiency. In the future, it would be valuable
to investigate more sophisticated strategies for integrating field
semantics to further enhance CTR methods.
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A Appendix A: Experimental Details
A.1 Baselines
We reproduced the following LLM-enhanced CTR methods as base-
lines in our experiments:
• KAR (RecSys’24) [51]: KAR leverages the LLM as a open-word
knowledge base to enhance the profile of users and items, and

then pass the encoded user/item embeddings through a knowl-
edge adaptation network to enhance traditional CTR models.
• LLM-CF (CIKM’24) [41]: LLM-CF uses LLMs to generate a base
of chains of thought (CoT) for sampled instances, which are
further retrieved to enhance CTR models. Consistent with the
original paper, we sampled 10% of the instances as sampled data
for fine-tuning and CoT data generation.
• CTRL (TORS’23) [22]: CTRL utilizes the LLM as the feature en-
coder for instances and uses a fine-grained contrastive learning
scheme to align cross-modal knowledge.
• EASE (CIKM’24) [36]: EASE trains a semantic adaptor network
to align item embeddings with the LLM, and then use it for en-
coding during inference. Following the original paper, we inited
the semantic adapter using BERT-Base [10] with 12 transformer
blocks, and cross-attention layers are added to the 6-th and 12-th
transformer blocks.
For fair comparisons, unless otherwise specified, we consistently

used the Llama3-8B [11] as the LLM in all the LLM-enhanced CTR
methods. Besides, we also reproduced two representative PLM-
enhanced methods:
• CELA (arXiv’24) [50]: CELA first pretrains a PLM on item de-
scriptions, then aligns item textual embeddings with pretrained
ID-based embeddings, and finally merges them into CTR models
for enhancement. We selected Robert-base [31] as the PLM as it
performs the best in the original paper.
• ClickPrompt (WWW’24) [24]: ClickPrompt uses a CTR model
to encode instances into soft tokens, which are then treated as
prefix tokens in a PLM for generating instance-level semantic
knowledge. Following the original paper, we selected Robert-
base [31] as the PLM in our experiment.

A.2 Backbones
For all the backbone models, we reused the implement of an open-
source CTR prediction library3 - FuxiCTR [61], following the previ-
ous work [21, 34, 62]. We selected six representative CTR methods
as backbones in our experiments, including:
• FM (ICDM’10) [38]: FM introduces factorization machines to
model pairwise feature interactions via factorized parameters.
• DeepFM (IJCAI’17) [15]: DeepFM combines factorization ma-
chines with deep neural networks to jointly learn low-order and
high-order feature interactions. We fix the DNN layers at [300,
300, 128] in our experiments.
• FwFM (WWW’18) [35]: FwFM proposes field-weighted factor-
ization machines that learn field-specific interaction weights to
better capture heterogeneous feature relationships.
• FmFM (WWW’21) [40]: FmFM enhances FM with field-matrix
factorization using learnable projection matrices per field pair,
enabling more expressive cross-field interactions.
• FinalMLP (AAAI’23) [34]: FinalMLP designs two Stream Fea-
ture Interaction networks to progressively refine feature repre-
sentations learned by MLP. We select the MLP hidden units size
from {400, 500} and the MLP layer number from {2, 3}.
• WuKong (ICML’24) [56]:WuKong employs an interaction stack
on the WuKong layer to capture feature interactions, where each
WuKong layer consists of a Factorization Machine Block (FMB)

3https://github.com/reczoo/FuxiCTR

https://github.com/reczoo/FuxiCTR
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Table 4: Fine-tuning loss (in SSFT module) comparison be-
tween language generative loss (L𝐿𝐺 ) and contrastive loss
(L𝐶𝐿).

Method Gift Cards Video Games

Logloss ↓ AUC ↑ RelaImpr Logloss ↓ AUC ↑ RelaImpr

DeepFM
Base 0.4751 0.6713 0.5762 0.6692
L𝐿𝐺 0.4659 0.6794 4.73% 0.5755 0.6718 1.55%
L𝐶𝐿 0.4657 0.6797 4.90% 0.5834 0.6744 3.10%

WuKong
Base 0.4755 0.6728 0.5819 0.6767
L𝐿𝐺 0.4748 0.6800 4.14% 0.5795 0.6795 1.57%
L𝐶𝐿 0.4745 0.6802 4.24% 0.5763 0.6819 2.91%

Table 5: Feature representation enhancement loss (in FRE
module) comparison between mean squared error loss
(L𝑀𝑆𝐸 ), contrastive loss (L𝐶𝐿), and Kullback-Leibler diver-
gence loss (L𝐾𝐿).

Method Gift Cards Video Games
Logloss ↓ AUC ↑ RelaImpr Logloss ↓ AUC ↑ RelaImpr

DeepFM

Base 0.4751 0.6713 0.5762 0.6692
L𝑀𝑆𝐸 0.4750 0.6767 3.15% 0.5760 0.6711 1.15%
L𝐶𝐿 0.4750 0.6763 2.92% 0.5762 0.6699 0.44%
L𝐾𝐿 0.4657 0.6797 4.90% 0.5834 0.6744 3.10%

WuKong

Base 0.4755 0.6728 0.5819 0.6767
L𝑀𝑆𝐸 0.4755 0.6737 0.49% 0.5787 0.6795 1.57%
L𝐶𝐿 0.4753 0.6738 0.55% 0.5805 0.6788 1.17%
L𝐾𝐿 0.4745 0.6802 4.24% 0.5763 0.6819 2.91%

and a Linear Compress Block. We select the interaction layer
number from {4, 8}, the FMB layer from {2, 3} and the compression
dimension from {24, 32} respectively.

For the implementation of LLaCTR, the SSFT module and FRE mod-
ule remained consistent across all backbones. The implementation
of the FIE module had slightly difference on explicit and implicit
feature interaction backbones. Specifically:
• 1) For explicit feature interaction backbones (FM, DeepFM, FwFM
and FmFM), the FIE module was implemented by adding the
learnable field interaction matrix on the original feature inter-
action matrix. By explicitly guiding the learning of feature in-
teractions modeling, the FIE module can directly inject the field
interaction knowledge into the CTR models.
• 2) For implicit feature interaction backbones (FinalMLP and
WuKong), the FIE module was treated as an additional plugin
network to explicitly influence the second-order feature inter-
actions learning and generate CTR prediction logit, which was
later fused into the final prediction result of the original CTR
model.

B Appendix B: Supplementary Experiments
B.1 Efficiency Study
B.1.1 Efficiency Bottleneck Analysis. The training time of all LLM-
enhanced CTR methods can be divided into four parts: fine-tuning,
knowledge generation, semantic encoding and CTR prediction. To
study the efficiency bottleneck, we conducted a detailed training
time analysis on Video Games and MovieLens-1M datasets. The
results are shown in Table 6. We can derive:
• 1) The efficiency bottleneck of KAR and LLM-CF is the knowl-
edge generation. KAR requires to generate knowledge for a large
number of users/items, while LLM-CF needs to generate the CoT

Table 6: Time Cost (s) details of LLM-enhanced CTR baselines
and our LLaCTR.

Dataset Method Time Cost in Details

Fine-tuning Generation Enoding Prediction

Video Games

KAR 0 77,861 3,886 120
LLM-CF 15,179 78,104 1,676 178
CTRL 0 0 5,839 329
EASE 32,221 0 1,747 125

LLaCTR 599 0 12 124

MovieLens-1M

KAR 0 2,057 108 42
LLM-CF 5,234 26,094 355 64
CTRL 0 0 1,401 141
EASE 12,813 0 49 43

LLaCTR 415 0 11 34

data on numerous instances (even if sampled as 10%). The rea-
soning and generation of LLMs consume a significant amount of
time, and rise constantly as the length of generated text increases.
• 2) The encoding time overhead of CTRL is significantly higher
than other methods. Although encoding usually costs less time
than Fine-tuning and Inference, CTRL still faces an efficiency
bottleneck due to the large number of training instances that
need to be encoded.
• 3) The time overhead of fine-tuning with EASE is higher than
other methods. EASE freezes the LLM and trains trains the se-
mantic adaptor network during fine-tuning, but the frozen LLM
still needs to be involved in the model forward phase. Besides,
the parameter size of EASE’s semantic adaptor network (a BERT-
Base [10] network with 12 transformer blocks and an additional
2 cross-attention layers) is about 110M, while the trainable pa-
rameter size of LoRA [17] based Llama3-8B [11] (used in LLM-CF
and LLaCTR) is only approximately 3.4M (with the rank LoRA
as 8), leading to a higher fine-tuning time overhead for EASE.
• 4) The efficiency bottleneck of LLaCTR lies in fine-tuning. Al-
though fine-tuning on the sampled field-feature data (in the SSFT
module of LLaCTR) still incurs considerable time overhead com-
pared to traditional CTR methods, it is much more efficient than
fine-tuning on the numerous instance level or user/item level
data (e.g., LLM-CF and EASE).

B.1.2 Time Complexity Analysis. To further study the training
efficiency of LLaCTR and other LLM-enhanced CTR methods, we
discuss the training time complexity of these models here. For
the LLMs, let 𝐴 and 𝐵 denote the average input and output token
sequence lengths of the LLM, respectively, and 𝐷 its embedding
dimension. The average time overhead of the LLM can be expressed
as 𝐻 (𝐴) for fine-tuning/encoding and 𝐺 (𝐴, 𝐵) for generation. For
the original CTR model, 𝑡 denotes average time overhead and 𝑑 the
feature embedding dimension. 𝑈 , 𝐼 , and 𝑁 denote the number of
users, items, and total instances, respectively.

In LLaCTR, let 𝐾 represent the number of fields and 𝑆 represent
the feature sample number of SSFT module. The time complexity of
the SSFT module is𝑂 (𝑆𝐾𝐻 (𝐴) +𝐾𝐻 (𝐴)), while the FRE module is
𝑂 (𝐾𝐷𝑑) and the FRE module is𝑂 (𝑡 +𝐾2), respectively. The overall
time complexity of LLaCTR is𝑂 ((𝑆 + 1)𝐾𝐻 (𝐴) +𝐾𝐷𝑑 + (𝑡 +𝐾2)).
Since the time overhead on the LLM is much greater than the
enhancement on CTR models, the SSFT module will dominate the
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Table 7: Ablation Study on the other backbones.

Method Gift Games Music Movie

FwFM

Base 0.6691 0.6683 0.7553 0.8365
w/o FT 0.6714 0.6757 0.7587 0.8365
w/o FRE 0.6692 0.6729 0.7553 0.8366
w/o FIE 0.6710 0.6652 0.7572 0.8364
LLaCTR 0.6718 0.6780 0.7585 0.8367

FmFM

Base 0.6747 0.6706 0.7628 0.8325
w/o FT 0.6759 0.6759 0.7614 0.8334
w/o FRE 0.6750 0.6714 0.7608 0.8334
w/o FIE 0.6753 0.6710 0.7612 0.8332
LLaCTR 0.6761 0.6765 0.7615 0.8335

FinalMLP

Base 0.6723 0.6761 0.7557 0.8260
w/o FT 0.6815 0.6787 0.7554 0.8330
w/o FRE 0.6757 0.6772 0.7564 0.8332
w/o FIE 0.6800 0.6775 0.7555 0.8324
LLaCTR 0.6818 0.6832 0.7552 0.8340

Table 8: Inference Time (s) on LLM-enhanced CTR methods.

Dataset WuKong KAR LLM-CF CTRL EASE LLaCTR
Video Games 1.57 1.66 1.84 1.81 1.73 1.63
MovieLens-1M 0.32 0.41 0.53 0.46 0.45 0.41

overall time overhead, and the time complexity can be simplified
to 𝑂 ((𝑆 + 1)𝐾𝐻 (𝐴)).

Similarly, the time complexity of KAR is𝑂 ((𝑈 +𝐼 )𝐺 (𝐴, 𝐵)+ (𝑈 +
𝐼 )𝐻 (𝐴)), LLM-CF is 𝑂 (2𝑁𝐻 (𝐴) + 𝑁𝐺 (𝐴, 𝐵)), CTRL is𝑂 (𝑁𝐻 (𝐴)),
and EASE is 𝑂 (2𝐼𝐻 (𝐴)). Given that 𝐾 < 𝑆𝐾 ≪ (𝑈 + 𝐼 ) < 𝑁 ,
LLaCTR exhibits significantly lower training time complexity com-
pared to other LLM-enhanced CTRmethods. This further highlights
the efficiency of LLaCTR’s field-level enhancement approach.

B.2 Empirical Study
B.2.1 Fine-tuning Loss Study. For the fine-tuning loss in the SSFT
module, we compare the performance of language generative loss
(L𝐿𝐺 ) with contrastive loss (L𝐶𝐿) on over DeepFM and WuKong
backbones, and the results are shown in Table 4. We observe that
the contrastive loss performs slightly better than the language
generative loss, so we use the contrastive loss as the final fine-
tuning loss.

B.2.2 Alignment Loss Study. For the feature representation en-
hancement loss in the FRE module, we compare the performance
of mean squared error loss (L𝑀𝑆𝐸 ), contrastive loss (L𝐶𝐿), and
Kullback-Leibler divergence loss (L𝐾𝐿) over DeepFM and WuKong
backbones, and the results are shown in Table 5. We find that the
KL divergence loss performs better than the MSE loss and CL loss,
which is more suitable for enhancement loss.

B.3 Inference Efficiency Study
We compare the total inference time of different LLM-enhanced
methods on the Video Games and MovieLens-1M datasets, with
the results shown in Table 8 (WuKong serves as the backbone
model). It can be observed that the differences among various LLM-
enhanced methods during the inference stage are negligible and
do not introduce significant latency compared to the backbone

model. This is because these LLM-enhanced methods have pre-
stored the knowledge of LLMs, requiring only lightweight networks
and a small number of parameters to inject the knowledge into
the inference process of traditional CTR models, thereby avoiding
excessive additional latency.

B.4 Ablation Study
The ablation study results on the FwFM, FmFM and FinalMLP
backbones are presented in Table 7. As can be seen, the results
are consistent with those obtained from other backbones. Both
the three modules are important, removing each would result in
performance drops.

B.5 Hyperparameters Sensitivity
Figure 6 illustrates performance of LLaCTR with different hyper-
parameters, where 𝜆𝑘𝑙 and 𝜆𝑓𝑚 control the effects of Feature Repre-
sentation Enhancement (FRE) and Feature Interaction Enhancement
(FIE) respectively. We can observed the general trend is that the
model’s performance would increase at the beginning and then drop
as these parameters increase. This result validates the effectiveness
of the Feature Representation Enhancement (FRE) module and Fea-
ture Interaction Enhancement (FIE) module. But over-emphasizing
the introduced component would incur performance drops as it
would relatively decline the contribution from original models.
Finely tuning these hyper-parameters for best balance could achieve
optimal performance.

0.01 0.05 0.1 0.3

0.674

0.676

0.678

0.680

AU
C

Gift Cards
DeepFM

𝜆𝑘𝑙

0.01 0.05 0.1 0.3
0.673

0.674

0.675

0.676

AU
C

Gift Cards

FmFM

𝜆𝑘𝑙

0.01 0.05 0.1 0.3
0.672

0.674

0.676

0.678

0.680

AU
C

Gift Cards
WuKong

𝜆𝑘𝑙

0.1 0.3 0.5 0.7
0.675

0.676

0.677

0.678

0.679

AU
C

Gift Cards
DeepFM

𝜆𝑓𝑚

0.05 0.1 0.3 0.5

0.672

0.673

0.674

0.675

0.676

AU
C

Gift Cards
FmFM

𝜆𝑓𝑚

0.1 0.3 0.5 0.7
0.670

0.672

0.674

0.676

0.678

0.680

AU
C

Gift Cards

WuKong

𝜆𝑓𝑚

Figure 6: Sensitivity analysis w.r.t. 𝜆𝑘𝑙 , 𝜆𝑓𝑚 .
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