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Sampling strategies have been widely applied in many recommendation systems to accelerate model learning from implicit

feedback data. A typical strategy is to draw negative instances with uniform distribution, which however will severely affect

model’s convergence, stability, and even recommendation accuracy. A promising solution for this problem is to over-sample

the “difficult” (a.k.a informative) instances that contribute more on training. But this will increase the risk of biasing the

model and leading to non-optimal results. Moreover, existing samplers are either heuristic, which require domain knowledge

and often fail to capture real “difficult” instances; or rely on a sampler model that suffers from low efficiency.

To deal with these problems, we propose an efficient and effective collaborative sampling method CoSam, which consists

of: (1) a collaborative sampler model that explicitly leverages user-item interaction information in sampling probability and

exhibits good properties of normalization, adaption, interaction information awareness, and sampling efficiency; and (2)

an integrated sampler-recommender framework, leveraging the sampler model in prediction to offset the bias caused by

uneven sampling. Correspondingly, we derive a fast reinforced training algorithm of our framework to boost the sampler

performance and sampler-recommender collaboration. Extensive experiments on four real-world datasets demonstrate the

superiority of the proposed collaborative sampler model and integrated sampler-recommender framework.
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1 INTRODUCTION
Recent research attention on recommendation is increasingly shifting from explicit feedback data (a.k.a. rating

data) towards implicit feedback data. Implicit feedback data is often a natural byproduct of users’ behavior (e.g.
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Fig. 1. Illustration of CoSam, which leverages interaction graph into sampling and integrates sampling distribution (model)
into prediction. The user-item interaction graph is constructed from user-item interaction information, where we give links
for the user-item pair with positive feedback.

clicks, purchase, check-in, etc.), and thus is more prevalent, inexpensive and scalable. However, recommendation

using implicit feedback is more challenging as it only provides partial feedback signal (a.k.a one-class feedback)—

only positive feedback are observed. While the unobserved feedback data can be treated as a source of negative

signal, its large scale incurs expensive time cost in learning a recommendation model. Existing methods mainly

rely on stochastic gradient descent optimizer (SGD) and negative sampling strategies to speed up training

procedures. Since the gradients are estimated on the sampled instances, sampling strategies play an important

role in recommendation systems and significantly affect the training efficiency and recommendation accuracy.

While there is rich literature on sampling strategies for better recommendation, to our knowledge, existing

samplers lack one or more desiderata. They can be roughly classified into the following four types:

• Uniform sampler, the most popular strategy that samples negative instances with equal probability.

Although efficient, it usually causes slow convergence and high variance, leading to non-optimal results

[35, 50, 51].

• Heuristic-based samplers, which define specific sampling rules to over-sample the “difficult” (a.k.a

informative) negative instances. The intuition behind this type of samplers is that the “difficult” instances,

which can be defined as the items with higher popularity [50, 52] or higher ranking position [35, 52], make

more contribution on gradients. However, these methods involve heuristic alterations to the model and

data, requiring recommendation expertise or tedious hyper-parameter tuning. Moreover, heuristic samplers

usually lack flexibility and often fail to capture really “difficult” instances.
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• Model-based adaptive samplers, which define a class of sampling distribution with a flexible sampler

model [10, 13, 34, 42, 43]. Existing model-based samplers mainly adopt adversarial learning framework

[15], where the sampler and the recommender play a min-max game. With adversarial learning between

the two models, the sampler will learn to fit users’ preference distribution and thus adaptively generate

positive-like “difficult” instances. While this type of samplers have been proved effective, they tend to be

very slow in large dataset. The reason is that the sampling distribution will dynamic evolve with the training

proceeding, the sampling process usually requires a traversal of all instances, which is time-consuming and

computationally inefficient. Moreover, the adversarial sampler will yield a biased estimate of the gradients

since its uneven sampling distribution will skew the instance contribution, resulting in sub-optimal results.

Typically, the recommendation model will be biased to over-fit the “difficult” negative instances. These

instances will be predicted with relatively low preference scores. In fact, these “difficult” but positive-like

items are likely to be adopted by the user.

• Auxiliary information-based samplers, which leverage auxiliary information (e.g. social network,

users’ exposure) to sample informative negative instances [5, 10]. However, these auxiliary information

may not be available in many recommender systems.

In a word, designing a satisfactory sampler is important, but challenging. Drawing on the advantages of existing

model-based samplers, we explore a more advanced model-based sampler. We have to address the following key

research problems:

(P1) How to design a sampler model that supports efficient and effective sampling?

(P2) How to mitigate the bias caused by the uneven sampling probability?

In this paper, we propose a novel model-based adaptive sampler named Collaborative Sampler (CoSam). Cor-

responding to above two problems, CoSam has two improvements and “collaborative” has two-fold meanings.

First, to tackle the problem (P1), we propose a novel collaborative sampler model, which leverages collaborative
signals in sampling. The collaborative signals — more specifically the user-item interaction information and its

extended user-item interaction graph as illustrated in Figure 1— reveals correlations among users and items.

These correlations can be expressed with the information paths along the graph. For example, as illustrated in

Figure 1, the information paths U1-I2-U2, U1-I3-U2 between users U1 and U2, indicate the users have similar

behaviors, as they have interacted with common items I2, I3. Correspondingly, their feedback data may have

similar level of difficulty and should be sampled with similar distribution. Another example can be seen from the

rich information paths between the user U1 and item I4 (e.g. U1-I2-U2-I4, U1-I3-U4-I4). It reflects U1 and I4 may

have high affinity although they have no directed interaction, since U1’s similar users U2,U4 have interacted with

I4. Correspondingly, this feedback data is potentially highly informative (difficult) for the recommendation model.

Thus, CoSam defines a sampler model on the graph and constructs adaptive sampling distribution based on

information paths, which naturally encodes this useful correlation information into distribution and potentially

boosts sampling performance. Moreover, a specific random walk-based sampling strategy is developed to support

fast sampling from the proposed dynamic distribution, which will evolve over the large item space as training goes

on. Our theoretical analysis proves that the CoSam satisfies the desirable properties of normalization, adaption,

interaction information awareness, and sampling efficiency.

Second, to address the problem (P2), we propose a novel integrated sampler-recommender framework to

replace adversarial framework. In our integrated framework, the sampler acts as a filter to remove relatively

“easy” instances and the recommender focuses on differentiating the really “difficult” instances that can not

be differentiated by the sampler. This way, the sampler and the recommender will collaboratively characterize

users’ preference and satisfy the following desirable property: even although the recommender model is learned

with a highly uneven sampler, its biased prediction can be refined by integrating the sampling probability.
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Table 1. Notation and Definitions.

Notation Annotation

𝑈 User set

𝐼 Global item set

𝑿 The matrix of implicit feedback data

X𝑢 The positive item set of the user 𝑢

S The sampler model

R The recommender model

𝐺𝑢 The sampled item set for each user 𝑢 returned by S

𝑁𝑢 , 𝑝𝑠 (𝑖 |𝑢;𝜃 ) The sample-size and sampling distribution of S for each user 𝑢

𝑓𝑟 (𝑢, 𝑖;𝜑) a parameterized function mapping user/item attributes into predicted preference scores

𝜸 (𝑡 )
𝑖

The item label vector for item 𝑖 after 𝑡-th revisions in CoSam

𝝆 (𝑡 )
𝑢 The sampling distribution for each user 𝑢 after 𝑡-th revisions in CoSam

𝑧𝑖 The one-hot vector in which 𝑖-th element is equal to 1

U The uniform distribution in which each element is set equally

We further derive a fast reinforced training algorithm of our framework to boost sampler’s performance and

sampler-recommender collaboration. Our framework and algorithm can be used for most recommender models.

It is worthwhile to highlight the following contributions:

• We propose an efficient and effective collaborative sampler model by leveraging user-item interaction

information into sampling.

• We propose an integrated sampler-recommender framework, which leverages the sampler model into

prediction to offset the sampling bias.

• Our experimental evaluations on four well-known benchmark datasets validate the superiority of the

proposed collaborative sampler model and integrated sampler-recommender framework.

The rest of this paper is organized as follows. We give the problem definition and background in section 2.

The proposed sampling method CoSam is introduced in section 3. The experimental results and discussions are

presented in section 4. We briefly review related works in section 5. Finally, we conclude the paper and present

some directions for future work in section 6.

2 PRELIMINARIES
In this section, we first give the problem definition of the implicit recommendation. Then, we introduce the model-

based sampler with the adversarial sampler-recommender framework and analyze its merits and weaknesses.

2.1 Recommendation using implicit feedback
Suppose we have a recommender system with user set𝑈 (including 𝑛 users) and item set 𝐼 (including𝑚 items).

The implicit feedback data is represented as a 𝑛×𝑚 binary matrix X with entries 𝑥𝑢𝑖 ∈ {0, 1} denoting whether or
not the user 𝑢 has interacted the item 𝑖 . Also, we let X𝑢 denote the set of positive items that have been interacted

by user 𝑢. The task of an implicit recommender system can be stated as follows: learning user’s preference from

the available implicit feedback and recommending items that are most likely to be interacted by the user. The

notations of this work are summarized in Table 1.
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2.2 Adversarial sampler-recommender framework
The adversarial sampler-recommender framework contains:

A sampler model (S): 𝐺𝑢 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑁𝑢, 𝑝𝑠 (𝑖 |𝑢;𝜃 )), which draws a small item set (𝐺𝑢 ) for each user 𝑢

from the global item space; where the parameter 𝑁𝑢 denotes the number of sampled items and the conditional

probability 𝑝𝑠 (𝑖 |𝑢;𝜃 ) denotes the flexible sampling distribution with parameters 𝜃 . The sampler model tries to fit

the user’s preference distribution to generate “difficult” instances for recommender. We remark that some works

[10] will remove the sampled positive instances from 𝐺𝑢 .

A recommender model (R): which captures user’s preference and makes recommendation. In the adversarial

framework, R is optimized to distill real positive items (𝑖 ∈ X𝑢 ) from the sampled training set [X𝑢,𝐺𝑢]: X𝑢 ∼
𝑝𝑟 (X𝑢 | [X𝑢,𝐺𝑢], 𝑓𝑟 (𝑢, 𝑖;𝜑)), where [X𝑢,𝐺𝑢] denotes the union of the positive item set 𝑋𝑢 and sampled negative

item set𝐺𝑢 . 𝑓𝑟 (𝑢, 𝑖;𝜑) is a parameterized preference function, mapping attributes (e.g. ids) of users and items into

the predicted preference with parameters 𝜑 ; 𝑝𝑟 denotes likelihood function. Without loss of generality, here we

choose Bernoulli classifier as an example for further derivation and it can be easily replaced by other functions

(e.g. Gaussian likelihood [33], Bayesian Personalized Ranking [36]). Formally, we have:

𝑝𝑟 (X𝑢 | [X𝑢,𝐺𝑢]) =
∏

𝑖∈[X𝑢 ,𝐺𝑢 ]
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑥𝑢𝑖 , 𝑓𝑟 (𝑢, 𝑖;𝜑)) (1)

In the adversarial framework, S and R play an adversarial game and optimize the following objective function:

min

𝜃
max

𝜑

∑
𝑢∈𝑈

𝐸𝐺𝑢∼𝑆 [
∑
𝑖∈𝑋𝑢

log(𝑓𝑟 (𝑢, 𝑖;𝜑)) +
∑
𝑖∈𝐺𝑢

log(1 − 𝑓𝑟 (𝑢, 𝑖;𝜑))] (2)

where 𝐸𝐺𝑢∼𝑆 [.] stands for 𝐸𝐺𝑢∼𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑁𝑢 ,𝑝𝑠 (𝑖 |𝑢;𝜃 )) [.]. Naturally, with the competition between two models, S

will be learned to draw the difficult instances with higher preference scores, which provide larger gradients and

more information to train R.

Weaknesses. However, although the model-based sampler with adversarial sampler-recommender framework

is capable of adaptively capturing difficult instances, we emphasize two weaknesses of this kind of methods: (1)

The sampling process is time-cost expensive. Since the sampling probability will evolve over the large item space

with the training going on, the sampling process requires a traversal of all instances ((𝑂 (𝑛 ×𝑚))) to update the

dynamic sampling distribution and to draw instances from the distribution. (2) The adversarial uneven sampler

will create biases on the recommendation model, leading to non-optimal results [4]. It can be understood from

the expected objective function of the recommender model in the adversarial framework:∑
𝑢∈𝑈

[
∑
𝑖∈X𝑢

log(𝑓𝑟 (𝑢, 𝑖;𝜑)) +
∑
𝑖∈𝐼

𝑁𝑢𝐸 [𝑝𝑟 (𝑖 |𝑢)] log(1 − 𝑓𝑟 (𝑢, 𝑖;𝜑))] (3)

which is different from the original objective function without sampling. The negative instances have been

weighted with sampling probability and the objective function is biased from the data likelihood. Moreover,

with the adversarial training between the sampler and recommender, the sampler will highly incline to draw

"positive-like" negative data [14, 15]. Correspondingly, these instances will be over-trained and the learned

preference scores 𝑓𝑟 (𝑢, 𝑖;𝜑) of these instances will be biased to have relatively low values. In fact, these negative

but “positive-like” items are highly likely to be interacted by the user. The recommendation performance will

suffer. Meanwhile, the prediction accuracy on other relatively “easy” instances may deteriorate too due to the

insufficient training of them. A naive solution for this problem is to offset the training instances with the inverse

of their sampling probability. However, the gradients will be highly instable and potentially exploded.

Thus, in this paper, we are interested in, and propose a solution to two related problems:

(1) A new sampler model support efficient and effective sampling.

(2) A new sampler-recommender framework to mitigate biases caused by uneven sampler.
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3 METHODOLOGY
We now present the proposed sampler CoSam. there are two key components in CoSam: a collaborative sampler

model and an integrated sampler-recommender framework.

3.1 Collaborative sampler model
To support both effective and efficient sampling, we propose a new sampler model based on collaborative signal,

which contains rich correlations information among users and items. We would like to encode such useful

information int sampling distribution and thus construct interaction graph as Figure 2, where we give links for

the user-item pairs with positive feedback. Inspired by the success of the graph convolutional network model

[12, 28, 44, 49, 57] in capturing graph proximity, CoSam contains many propagation layers, which refine users

sampling probability based on their graph neighbors. Let vector 𝝆𝑢 denote the sampling distribution for each

user 𝑢 over items (𝑝𝑠 (𝑖 |𝑢;𝜑) ≡ 𝝆𝑢 ). We initially set 𝝆 (0)
𝑢 with uniform distribution U and set the initial label for

each item with its item indicator vector 𝜸 (0)
𝑖

= z𝑖 . z𝑖 is an one-hot vector in which 𝑖-th element is equal to 1.

The model will propagation users and items information along the graph to refine users’ sampling distribution

and naturally inject useful correlation information into sampling distribution. Concretely, as shown in Figure 2,

in each layer, each node in the graph collect information from the connected neighbors and reconstruct their

distribution or labels as follows:

𝝆 (𝑡 )
𝑢 = 𝑐1

∑
𝑖∈𝐼 ,𝑖∈N𝑢

𝑤
(1)
𝑢𝑖

𝜸 (𝑡−1)
𝑖

+ (1 − 𝑐1)𝝆 (0)
𝑢 (4)

𝜸 (𝑡 )
𝑖

= 𝑐2

∑
𝑢∈𝑈 ,𝑢∈N𝑖

𝑤
(2)
𝑖𝑢

𝝆 (𝑡−1)
𝑢 + (1 − 𝑐2)𝜸 (0)

𝑖
(5)

WhereN𝑢 (N𝑖 ) denotes the connected item (user) set of user𝑢 (item 𝑖). The parameters 𝑐1, 𝑐2 (0 ≤ 𝑐1, 𝑐2 ≤ 1) specify
the relative contributions from the neighbors and the initial vectors.𝑤

(1)
𝑢𝑖
,𝑤

(2)
𝑖𝑢

are learned parameters, which

balances the heterogenous influence from different neighborhoods and meets

∑
𝑖∈𝐼 ,𝑖∈N𝑢

𝑤
(1)
𝑢𝑖

= 1,

∑
𝑢∈𝑈 ,𝑢∈N𝑖

𝑤
(2)
𝑖𝑢

=

1,𝑤
(1)
𝑢𝑖

> 0,𝑤
(2)
𝑢𝑖

> 0. Overall, CoSam models sampling probability with an interactive graph-aware function 𝑔

parameterized by edge weights𝑤 (𝑤 (1) ,𝑤 (2)
), to which eq. (4),(5) converges:[

P
Y

]
= 𝑔𝑤 (X) ≡ lim

𝑡→∞

[
P(𝑡 )

Y(𝑡 )

]
= (I − C

[
0 W(1)

W(2) 0

]
)−1 (I − C)

[
P(0)

Y(0)

]
(6)

where we collect sampling distribution 𝝆𝑢 for each user as matrix P and collect labels 𝜸𝑖 for each item as matrix

Y; collect edge weights 𝑤 (1)
𝑢𝑖
,𝑤

(2)
𝑖𝑢

as matrixes W(1) ,W(2)
, in which W(1)

𝑢𝑖
= 𝑤

(1)
𝑢𝑖

, W(2)
𝑖𝑢

= 𝑤
(2)
𝑖𝑢

for connected

user-item pairs andW(1)
𝑢𝑖

= 0,W(2)
𝑖𝑢

= 0 for others; collect 𝑐1, 𝑐2 as a (𝑛 +𝑚) × (𝑛 +𝑚) diagonal matrix C, in which

the first 𝑛 diagonal elements are 𝑐1 and other diagonal elements are 𝑐2. We show that the proposed collaborative

sampler model satisfies the following four desirable properties:

Normalized. The constructed sampling model must have a valid probability distribution over the item space,

i.e. for each user 𝑢, we have
∑
𝑖∈𝐼

𝝆𝑢𝑖 = 1.

Proof. Let mark the adjacency matrix of the interactive graph as W =

[
0 W(1)

W(2) 0

]
. Here we mark user

nodes in the interaction graph with id from 1 to 𝑛, and item nodes with id from 𝑛 + 1 to 𝑛 +𝑚. Let e denotes the
column vector of 𝑛 +𝑚 ones. we have: (𝐼 −CW)e = (𝐼 −C)e. Note that (𝐼 −CW)−1 (𝐼 −CW)e = e. Thus, we can

get (𝐼 − 𝑐W)−1 (𝐼 − C)e = e. Then, we have
[
P(𝑡 )

Y(𝑡 )

]
e = (𝐼 − 𝑐W)−1 (𝐼 − C)

[
P(0)

Y(0)

]
e = e. □
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Fig. 3. The constructed sampling distribution of CoSam can be considered as a mixture of meta distributions, where the
mixing coefficients are controlled by the information paths and the learned path strength.

Interaction information awareness. As we can seem from eq.(6), the matrix H = (𝐼 −𝐶𝑊 )−1 (𝐼 −𝐶) is a
graph or diffusion kernel [56], which has been widely adopted to measure nodes proximity in the graph. Thus, as

shown in Figure 3, the constructed sampling distribution can be considered as a mixture of the meta distributions

(uniform distribution or item indictor distribution), where the mixing coefficients are specified with the adaptive

interaction graph proximity, which will evolve with training process going on. That is, we have the following

formula of the sampling distribution of user 𝑢:

𝜌𝑢 =
∑
𝑘∈𝑈

H𝑢,𝑘U +
∑
𝑘∈𝐼

H𝑢,𝑛+𝑘z𝑘 (7)

where H𝑖, 𝑗 denotes the (𝑖, 𝑗)-th element in the matrix H characterizing the graph proximity between the nodes 𝑖

and 𝑗 . the graph proximity H𝑖, 𝑗 can be further depicted as aggregated strength of different information paths

between the nodes 𝑖 and 𝑗 :

H𝑖 𝑗 = ((1 − 𝑐1) + (1 − 𝑐2)𝑐1W𝑖, 𝑗 + (1 − 𝑐1)𝑐1𝑐2

∏
𝑘1∈𝐼

W𝑖,𝑘1
W𝑘1, 𝑗

+ (1 − 𝑐2)𝑐1𝑐2𝑐1

∏
𝑘1∈𝐼 ,𝑘2∈𝑈

W𝑖,𝑘1+𝑚W𝑘1+𝑚,𝑘2
W𝑘2, 𝑗 + . . .)
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=
∑

P∈A𝑖 𝑗

𝐹 (P) (8)

where P denotes a path instance on the graph and A𝑖 𝑗 denotes the set of path P between node 𝑖 and 𝑗 . 𝐹 (P) is
the product of edge weights on the path, which can be defined as path strength between the nodes. The path

with shorter length and larger edge weights will have stronger path strength. Thus, as illustrated in Figure 3,

the constructed sampling probability can be considered as a mixture of meta distributions, where the mixing

coefficients are controlled by the number of information paths and adaptive paths strength. A closer user-item

pair with more and stronger information paths will be sampled with higher probability. Naturally, the rich

interaction information has been encoded into sampling distribution.

Sampling efficiency. Although the sampling distribution of CoSam will evolve with training going on, CoSam

supports fast sampling with the following adaptive random walk strategy:

Adaptive random walk strategy (ARW for short): For the target user 𝑢, we perform the adaptive random walk

from 𝑢 to sample the instances from 𝜌𝑢 : At each step of random walk, we are at a certain node 𝑣 . We have two

options: (1) If 𝑣 is a user (or item) node, with probability (1 − 𝑐1) (or (1 − 𝑐2)), we terminate the random walk. we

randomly sample an item with meta distribution (or select 𝑣 as an instance). (2) With probability 𝑐1 (or 𝑐2), we

randomly transfer to one of 𝑣 ’s neighbors based on current learned weights𝑊𝑣∗.
It is easy to check that the path strength is equal to the sampled probability of the walking path from the

aforementioned adaptive random walk strategy (ARW for short): 𝐹 (P|P ∈ A𝑢𝑣) = 𝑝𝐴𝑅𝑊 (P, 𝑣 |𝑢, 𝜃 ). Thus, the
sampled items with ARW meets distribution 𝜌𝑢 , even though 𝜌𝑢 will evolve with training going on. This way,

the sampling process just requires a random walk along the graph instead of an expensive traversal of all items.

The complexity of sampling an instance can be heavily reduced from 𝑂 (𝑚) to 𝑂 (𝑙𝑟 ), where 𝑙𝑟 denotes the the
length of the random walk and its expectation is upper-bounded with 𝐸 [𝑙𝑟 ] = 2/(1 −𝑚𝑖𝑛(𝑐1, 𝑐2)). In practical,

we are usually interested in users’ local graph contexts and thus control the length of random walk smaller than

10, which is much smaller than the number of items.

We remark that the training and updating of the collaborative sampler is efficient too, which will be discussed

in the subsection 3.3.

Adaption. We remark the adaption of our collaborative sampler model in following two aspects: (1) The

sampling distribution of CoSam is defined with a parameterized function instead of pre-defined values. Thus,

the sampling distribution will adaptively evolve with training process going on. (2) The random walk-based

sampling strategy has adaptive transfer probability so that it supports adaptively sampling from dynamic sampling

distribution.

3.2 Integrated sampler-recommender framework
Here we present our novel integrated sampler-recommender framework. Instead of letting the sampler (S) and

recommender (R) play an adversarial game, we integrate them into a probabilistic generative process. The

framework is motivated by the recent business study of the consumer behavior. As suggested in [3], consumers

will first collect a set of potentially-preferred candidate items, and then carefully select desired items from the set.

Correspondingly, S and R are integrated into the following decision-making process:

(1) Sample a small potential-preferred item set 𝐺𝑢 from the global item set based on S:

𝐺𝑢 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑁𝑢, 𝑝𝑠 (𝑖 |𝑢;𝜃 )).
(2) Distill truly positive items from 𝐺𝑢 based on R:

X𝑢 ∼ 𝑝𝑟 (X𝑢 |𝐺𝑢, 𝑓𝑟 (𝑢, 𝑖;𝜑)).
The intuition behind this process is similar to the adversarial framework: S acts as a filter to remove relatively

“easy” instances and thus R can be guided to focus on the really “difficult” instances that can not be differentiated

by S. But the integrated framework differs from the adversarial framework in that the sampler in our framework
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will make contribution on prediction. S and R in our framework collaboratively characterize users’ preference.

Concretely, the probability of the item being positive can be depicted as follow:

𝑝 (𝑖 ∈ X𝑢) = 𝑝 (𝑖 ∈ 𝐺𝑢)𝑝 (𝑖 ∈ X𝑢 |𝑖 ∈ 𝐺𝑢)
∝ 𝑝𝑠 (𝑖 |𝑢;𝜃 ) 𝑓𝑟 (𝑢, 𝑖;𝜑) (9)

A good property of our framework can be observed: even although the recommender model is trained with an

highly uneven sampler, its biased prediction can be refined by integrating the sampling probability. It is coincident

with our intuition. R’s biased prediction on the “difficult” instances, which may be biased with low values due to

the over-training, will be refined with multiplied by a relatively large value; On the contrary, the prediction on

these “easy” instances, which is highly negative, will be weighted with small values. Equation (9) guarantees the

final prediction will fit the data likelihood.

3.2.1 Training objective and algorithm.
We further derive a fast and general training algorithm to learn the sampler model (S) and recommender model

(R) in our framework. To make unbiased prediction, S and R are optimized by maximizing the following data

likelihood:

log𝑝 (𝑋 ) =
∑
𝑢∈𝑈

log𝑝 (X𝑢) =
∑
𝑢∈𝑈

log

∑
𝐺𝑢

𝑝 (X𝑢,𝐺𝑢)

=
∑
𝑢∈𝑈

log

∑
𝐺𝑢

𝑝 (X𝑢 |𝐺𝑢)𝑝 (𝐺𝑢) (10)

However, directly optimizing marginal probability 𝑝 (𝑋 ) is intractable due to the sum over all possible sampled

sets inside the logarithm. The number of the feasible item sets is exponential growth, which causes efficiency

problem. To deal with this problem, we do some derivations of equation (10) for fast learning.

Note that the positive instances must be contained in the sampled set, otherwise they can not be selected by

the model R. Thus, we can divide the 𝐺𝑢 into two disjoint parts: the positive item set 𝐺+
𝑢 , which is observed

constant and equivalent to X𝑢 ; the rest item set 𝐺𝑟
𝑢 containing other sampled items. Thus, the probability of

the sampled item set can be approximated as: 𝑝 (𝐺𝑢) ≈ 𝐶 |𝑋𝑢 |
𝑁𝑢

𝑝 (𝐺+
𝑢 )𝑝 (𝐺𝑟

𝑢), where 𝐶
|𝑋𝑢 |
𝑁𝑢

denotes Combinatorial

Numbers. We have:

log𝑝 (𝑋 ) =
∑
𝑢∈𝑈

log

∑
𝐺𝑢

𝑝 (X𝑢,𝐺𝑢)

=
∑
𝑢∈𝑈

log

∑
𝐺𝑟
𝑢

𝑝 (𝐺+
𝑢 )𝑝 (𝐺𝑟

𝑢)𝑝 (X𝑢 |𝐺+
𝑢 ,𝐺

𝑟
𝑢) + 𝑐𝑜𝑛𝑠𝑡

=
∑
𝑢∈𝑈

(log𝑝 (𝐺+
𝑢 ) + log𝐸𝐺𝑢

[𝑝 (X𝑢 |𝐺+
𝑢 ,𝐺

𝑟
𝑢)]) + 𝑐𝑜𝑛𝑠𝑡 (11)

where ‘const’ denotes the constant term and can be left out. However, directly optimizing equation (11) is

intractable too due to the expectation over the𝐺𝑟
𝑢 inside the logarithm. Thus, we turn to optimize the following

tight lower bound based on Jensen’s inequality:

log𝑝 (𝑋 ) ≥
∑
𝑢∈𝑈

(log𝑝 (𝐺+
𝑢 ) + 𝐸𝐺𝑢

[log𝑝 (X𝑢 |𝐺+
𝑢 ,𝐺

𝑟
𝑢)])

=
∑
𝑢∈𝑈

(
∑
𝑖∈X𝑢

log𝑝𝑠 (𝑖 |𝑢;𝜃 ) +
∑
𝑖∈X𝑢

log 𝑓𝑟 (𝑢, 𝑖;𝜑) + 𝐸𝐺𝑢
[
∑
𝑖∈𝐺𝑢

(1 − 𝑥𝑢𝑖 ) log(1 − 𝑓𝑟 (𝑢, 𝑖;𝜑))])
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=
∑
𝑢∈𝑈

(
∑
𝑖∈X𝑢

log𝑝𝑠 (𝑖 |𝑢;𝜃 ) +
∑
𝑖∈X𝑢

log 𝑓𝑟 (𝑢, 𝑖;𝜑) + 𝑁𝑢𝐸𝑝𝑠 [(1 − 𝑥𝑢𝑖 ) log(1 − 𝑓𝑟 (𝑢, 𝑖;𝜑))]) (12)

Optimizing recommendation model. By dropping irrelevant terms in eq.(12), we have the following objec-

tive function of R:

𝐿𝜑 =
∑
𝑖∈X𝑢

log 𝑓𝑟 (𝑢, 𝑖;𝜑) +
∑

𝛼 ∈𝐺𝑢 ,𝐺𝑢∼𝑆
(1 − 𝑥𝑢𝛼 ) log(1 − 𝑓𝑟 (𝑢, 𝛼 ;𝜑)) (13)

where we perform a sampling approximation in which the item 𝛼 is from the sampled item set 𝐺𝑢 returned by

S. We remark that the training objective of R in our framework is consistent with adversarial framework. R is

trained on the observed positive data and the sampled negative data from S. Our framework can be easily applied

for most recommendation models.

Optimizing sampler model. Due to the discrete nature of candidate set 𝐺𝑢 , we adopt the policy gradient

method from reinforced learning to optimize the model S. That is, the optimization of S can be viewed as a

reinforcement learning setting, where R gives a reward to action “selecting sampled items for a user performed

according to the policy probability 𝑝𝑠 (𝑖 |𝑢). We can derive the policy gradient of 𝐿 w.r.t 𝜃 :

∇𝜃𝐿 =
∑
𝑢∈𝑈

(
∑
𝑖∈X𝑢

∇𝜃 log𝑝𝑠 (𝑖 |𝑢;𝜃 ) + 𝑁𝑢𝐸𝑝𝑠 [𝑒𝑢𝑖 ])

=
∑
𝑢∈𝑈

(
∑
𝑖∈X𝑢

∇𝜃 log𝑝𝑠 (𝑖 |𝑢;𝜃 ) + 𝑁𝑢

∑
𝑖∈𝐼

∇𝜃𝑝𝑠 (𝑖 |𝑢;𝜃 )𝑒𝑢𝑖 )

=
∑
𝑢∈𝑈

(
∑
𝑖∈X𝑢

∇𝜃 log𝑝𝑠 (𝑖 |𝑢;𝜃 ) + 𝑁𝑢𝐸𝑝𝑠 [∇𝜃 log𝑝𝑠 (𝑖 |𝑢;𝜃 )𝑒𝑢𝑖 ])

≈
∑
𝑢∈𝑈

(
∑
𝑖∈X𝑢

∇𝜃 log𝑝𝑠 (𝑖 |𝑢;𝜃 ) +
∑

𝛼 ∈𝐺𝑢 ,𝐺𝑢∼𝑆
∇𝜃 log𝑝𝑠 (𝛼 |𝑢)𝑒𝑢𝛼 ) (14)

where 𝑒𝑢𝑖 = (1 − 𝑥𝑢𝑖 ) log(1 − 𝑓𝜑 (𝑢, 𝑖)) denotes the negative reward for the sampled negative items. Also, we

perform a sampling approximation in the last step in which the item 𝛼 is from the sampled item set 𝐺𝑢 .

3.3 Collaborative sampler with integrated framework
We further integrate aforementioned collaborative sampler into our integrated framework. When collaborative

sampler meets integrated framework, the collaborative signals can be well exploited. However, the training of S

will suffer from inefficiency due to the heavy computation of the sampling probability and gradients. Thus, we

further mitigate this efficiency problem by disassembling the sampling probability with different information

paths. we can re-write the sampling probability of the instance in our collaborative sampler as:

𝑝𝑠 (𝑖 |𝑢;𝜃 ) = 𝜌𝑢𝑖 =
∑
𝑘∈𝑈

H𝑢,𝑘

1

𝑚
+ H𝑢,𝑛+𝑖

=
1 − 𝑐1

1 − 𝑐1𝑐2

1

𝑚
+

∑
P∈A𝑢𝑖

𝐹 (P)

≡ 𝑝0 + 𝑝𝐴𝑅𝑊 (P, 𝑖 |𝑢;𝜃 ) (15)

where 𝐹 (P) denotes the path strength defined on eq.(8) and can be considered as the sampled probability of the

path from the aforementioned adaptive random walk strategy. Thus, we transfer ∇𝜃𝐿 (eq.(14)) into:
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Algorithm 1 Learning a recommendation model with CoSam

1: Initialize parameters 𝜑, 𝜃 randomly;

2: while not converge do
3: for each user 𝑢 do
4: Sample a set of items 𝐺𝑢 and paths S𝑢 with adaptive random walk strategy.

5: end for
6: Calculate gradients ∇𝜑𝐿 w.r.t parameters 𝜑 of R based on 𝐺𝑢 (eq. (13)).

7: Update 𝜑 based on ∇𝜑𝐿.

8: Calculate policy gradients ∇𝜃𝐿 w.r.t parameters 𝜃 of S based on S𝑢 and 𝐺𝑢 (equation (17)).

9: Update 𝜃 based on ∇𝜃𝐿.
10: end while

∇𝜃𝐿 =
∑
𝑢∈𝑈

(
∑
𝑖∈X𝑢

∇𝜃 log𝑝𝑠 (𝑖 |𝑢;𝜃 ) + 𝑁𝑢

∑
𝑖∈𝐼

∇𝜃𝑝𝑠 (𝑖 |𝑢;𝜃 )𝑒𝑢𝑖 )

=
∑
𝑢∈𝑈

(
∑
𝑖∈X𝑢

∑
P∈A𝑢𝑖

∇𝜃𝑝𝐴𝑅𝑊 (P, 𝑖 |𝑢;𝜃 )

𝑝𝑠 (𝑖 |𝑢;𝜃 )

+𝑁𝑢

∑
𝑖∈𝐼

∑
P∈A𝑢𝑖

∇𝜃𝑝𝐴𝑅𝑊 (P, 𝑖 |𝑢;𝜃 )𝑒𝑢𝑖 )

=
∑
𝑢∈𝑈

(
∑
𝑖∈X𝑢

𝐸P, 𝑗∼𝑝𝐴𝑅𝑊
[I[ 𝑗 = 𝑖]∇𝜃 log𝑝𝐴𝑅𝑊 (P, 𝑖 |𝑢;𝜃 )]

𝑝0 + 𝐸P, 𝑗∼𝑝𝐴𝑅𝑊
[I[ 𝑗 = 𝑖]]

+𝑁𝑢𝐸P,𝑖∼𝑝𝑠 [log∇𝜃𝑝𝐴𝑅𝑊 (P, 𝑖 |𝑢;𝜃 )𝑒𝑢𝑖 ]) (16)

where I[.] denotes indicator function. The gradient can be approximately estimated based on the sampled paths

for each user (P ∈ S𝑢 ) in a mini-batch:

∇𝜃𝐿 ≈
∑
𝑢∈𝑈

(
∑
𝑖∈X𝑢

∑
P, 𝑗 ∈S𝑢

[I[ 𝑗 = 𝑖]∇𝜃 log𝑝𝑅𝐴𝑊 (P, 𝑖 |𝑢;𝜃 )]
𝑁𝑢𝑝0 +

∑
P, 𝑗 ∈S𝑢

[I[ 𝑗 = 𝑖]]

+
∑

P, 𝑗 ∈S𝑢

[log∇𝜃𝑝𝑅𝐴𝑊 (P, 𝑖 |𝑢;𝜃 )𝑒𝑢𝑖 ]) (17)

The learning algorithm of CoSam is presented in Algorithm 1.

3.4 Discussion
3.4.1 Gradient analysis.
Sampling informatively. How to understand the gradient of 𝐿 w.r.t parameters 𝜃 of S? Let us draw an analogy

with the floating balls in the water as illustrated in Figure 4 for better description. The first term in eq.(14) will

give a force to push up these positive balls. Due to the correlations between the instances, which can be analogies

with elastic links lines between the balls, the negative instances which have strong correlations with positive

instances, will be pulled up due to the force from the lines. This effect drives S to over-sample "positive-like"

instances, which can reduce the sampling variance and improve convergence.

Sampling collaboratively. On the other hand, from the second term in eq.(14), the action of sampling a

negative item will be punished with a negative reward 𝑒𝑢𝑖 . we observe an interesting phenomenon that when

the sampled negative item is more hard to be differentiated by the model R, the reward will be more negative as
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Fig. 4. Illustration of how CoSam achieves sampling informatively and collaboratively.
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Fig. 5. Illustration of the previous adversarial framework (left) and our integrated framework (right).

illustrated in Figure 4. It can be explained by the collaboration effect between S and R. Note that the negative items

shall be differentiated either by the model S or by the model R. If R fails to differentiate a negative item, it naturally

turn to S for help and gives a signal to decrease the probability of selecting this item into sampled item set. The

reward guides S to flow to regions where S and R can well fit the data collaboratively. Moreover, if the sampling

probability of the item decreases with the effect of the reward, it suggests the item can be differentiated by S and

R’s costly effort on this item will be spared; Otherwise, S will maintain relatively high sampling probability so

that R can focus on this “highly difficult” instance.

3.4.2 Complexity analysis. The time cost on training CoSam consists of three parts: (1) On sampling, it requires

𝑂 (𝑛𝑙𝑟𝑁𝑢) time to sample instances and paths, where 𝑁𝑢 denotes the average number of sampled instances

over all users. (2) The model R can be updated with the sampled instances. This part depends on the selected

recommendation model and its complexity is also linear to the number of sampled instances 𝑂 (𝑛𝑁𝑢). (3) When

updating the model S, we just calculate rewards and estimate policy gradients from the sampled instances. The

time for this part is also 𝑂 (𝑛𝑁𝑢𝑙𝑟 ). In practise, as recent works [5], we usually let 𝑁𝑢 be several times (e.g. five)

as large as the number of the positive items of the user 𝑢 and thus have 𝑛𝑁𝑢 = 5|𝑋 + |, where |𝑋 + | denotes the
number of observed positive data in the system. Overall, due to the sparsity of the recommendation data, our

CoSam is efficient and can scale up to large dataset.

3.4.3 Linking to existing methods.
Adversarial framework. We remark two key differences of our integrated framework from adversarial frame-

work: (1) As illustrated in Figure 5, in our integrated framework, S and R collaboratively contribute to the

prediction, while the prediction in adversarial framework just depends on R. (2) Both frameworks are trained in
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a reinforced manner. However, S in our framework is trained for collaboration with R; while S in adversarial

framework is trained for competition with R.

Two-stage recommendation strategy. Another similar work is two-stage recommendation strategy [1, 7,

32, 58]. It contains: a recalling model to retrieve "positive-like" candidate items from global item pool and a

re-ranking model to finely select recommendations from the candidate item set. This work is different from our

integrated framework because the the two-stage recommendation strategy are not mechanism for training a

recommendation model. Instead, two-stage recommendation strategy is a operation to accelerate retrieval from a

pre-trained recommendation model by reducing the scale of the ranked items. Further, from the technical view,

the intermediate item set in our framework is a “soft” probabilistic variable generated from the sampled model;

while the intermediate item set in the two-stage recommendation strategy is a “hard” constant selected by the

retrieval model.

4 RELATED WORK
Recommendation using implicit feedback data. Recent years have seen a surge of research on recommen-

dation techniques using implicit feedback [24, 26, 37]. To handle the massive volume of the unobserved negative

data, two strategies have been proposed in previous works. The first is employing memorization strategies to

accelerate learning on the whole data. For example, ALS, eALS [2, 20, 22] have been proposed to memorize some

specific intermediate variables to avoid the massive repeated computations. However, this kind of methods are

just suitable for the recommendation model with K-separable property [2] and L2 loss function. The other type is

sampler-based methods, where the recommendation model are trained on the reduced sampling instances with

stochastic gradient descent (SGD) optimizer. This kind of methods have been widely applied in many recommen-

dation models, including classic matrix factorization [22, 25], pair-wised models (e.g. Bpr [36], NCR[39]) and

sophisticated neural network-based methods (e.g. CDL [41], DNN [48], NCF [19], XDeepFM [30], ConvNCF [18],

NGCF [44], lightGCN[17], Mult-VAE [31]).

Sampler for recommendation. The most popular sampling strategy is to sample negative data with equal

probability (uniformly). Although efficiently, the optimizer usually sample uninformative training instances

[35, 50, 51], which makes limited contribution on updating. The model can not be well trained and the final

recommendation performance will degrade. To deal with this problem, three types of sampling methods have

been proposed in recent literatures. The first is heuristic-based strategies, which pre-define a sampling rule to

over-sample informative instances [21, 35, 50, 53, 55]. For example, [21, 50, 52] propose to sample instances based

on global item popularity; [35, 51, 52, 54] propose to draw instances based on item ranking position. However,

these methods requires rich human experience and also lack flexibility. Another type is model-based sampler

[10, 13, 34, 42, 43], which defines a sampler model and the sampling probability which will adaptively evolve

by optimizing an adversarial objective. However, as analyzed in section 2, this kind of methods will suffer from

inefficiency and biases. Also, there are some works leverage auxiliary information to sample informative training

instances. For example, [5, 45, 55] claim to over-sample the items that have been consumed by social friends;

[9–11] leverage exposure data to find reliable negative instance. [46] leverages knowledge graph to enhance

negative sampling. However, these auxiliary information may not be available in many recommendation systems.

Random walk in recommendation. Random walk strategy has been widely applied in recommendation.

[23] performs random walk along the social network to search relevant users who have similar preference with

the target user for better rating prediction; [6] exploits random walk to obtain diverse recommendation; [40]

further extends [6] in heterogenous information network to generate valuable meta-paths; [6] performs random

walk to complete implicit feedback matrix for mitigating data sparsity problem; Similarly, [51] employs random

walk to find more positive instances. We remark that these works adopt static (uniform or pre-defined) transfer
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Table 2. Statistics of four datasets.

Datasets LastFM Movielens Ciao Epinions

Number of users 1,892 6,040 5,298 21,290

Number of items 4,476 3,678 19,264 33,992

Number of positive feedbacks 52,627 1,000,177 138,723 333,658

Density of positive feedbacks 0.62% 4.50% 0.14% 0.05%

probability in their random walk strategy. Besides, these random walks are not designed for sampling informative

negative instances.

To our knowledge, only one recent work SamWalker [5] employs adaptive random walk to sample nega-

tive instances for better training of the recommendation model. The random walk in our CoSam differs from

SamWalker in that: (1) the random walk in SamWalker is performed on the social network while it in CoSam is

on the user-item interaction graph; (2) the transfer probability in SamWalker is learned from users’ exposure

while it in CoSam is learned with the rewards from the recommendation model.

5 EXPERIMENTS
In this section, we conduct experiments to evaluate the performance of our CoSam. Our experiments are intended

to address the following research questions:

(RQ1) How does CoSam compare with existing sampling methods?

(RQ2) Does CoSam boost recommendation performance?

(RQ3) How does different components in CoSam (i.e. collaborative sampling model and integrated framework)

affect CoSam’s performance?

5.1 Experimental settings
Datasets and parameters. Four well-known recommendation datasets LastFM

1
, Movielens-1M

2
, Ciao

3
, Epin-

ions
4
, are used in our experiments. These datasets contain users’ feedback on items. The dataset statistics are

presented in Table 2. We preprocess the datasets so that all items have at least three interactions and "binarize"

user’s feedback into implicit feedback as [5, 47]. That is, as long as there exists some user-item interactions

(ratings or clicks), the corresponding implicit feedback is assigned a value of 1. Grid search and 5-fold cross

validation are used to find the best hyper-parameters and test the results. In our CoSam, as recent works [5, 50],

we set 𝑁𝑢 = 5|X𝑢 | and test 𝑐1, 𝑐2 of [0.4,0.6,0.8,1]. We also optimize the model with mini-batch Adam [27] and

test the learning rate of [0.001,0.01,0.1]. The setting of compared methods are referring to related works or tested

in our experiments. All experiments are conducted on a server with 2 Intel E5-2620 CPUs, 2 NVIDIA Titan-X

GPUs and 256G RAM. We will share our source code at github
5
when the paper get published.

Evaluation Metrics. We adopt the following metrics to evaluate recommendation performance:

• Recall@K (Rec@K): This metric quantifies the fraction of consumed items that are in the top-K ranking list

sorted by their estimated rankings. For each user 𝑢, we define 𝑅𝑒𝑐 (𝑢) as the set of recommended items in

1
https://grouplens.org/datasets/hetrec-2011/

2
https://grouplens.org/datasets/movielens/

3
http://www.cse.msu.edu/~tangjili/trust

4
http://www.trustlet.org/epinions

5
https://github.com/jiawei-chen/CoSam
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Table 3. The performance metrics of the compared samplers. The boldface font denotes the winner in that column. The
rows ’Impv’ indicate the relative performance gain of CoSam over the best baseline. † indicates that the result of a paired
difference test is significant at 𝑝 < 0.05. We also present running time (second) for comparison.

Methods

LastFM Movielens-1M

Pre@5 Rec@5 NDCG Time Pre@5 Rec@5 NDCG Time

Uniform 0.0954 0.0859 0.3455 18.7 0.3603 0.0790 0.5669 280

Pop 0.0978 0.0881 0.3513 21.6 0.3633 0.0811 0.5692 329

Adp 0.0986 0.0881 0.3448 24.1 0.3635 0.0802 0.5667 315

Adv 0.1002 0.0897 0.3503 104 0.3691 0.0811 0.5689 1212

CoSam 0.1302 0.1162 0.3838 23.2 0.3772 0.0837 0.5726 672

Impv% 23.00% 29.53% 9.24% - 2.17% 3.15% 0.59% -

Methods

Ciao Epinions

Pre@5 Rec@5 NDCG Time Pre@5 Rec@5 NDCG Time

Uniform 0.0140 0.0122 0.1775 65.0 0.0085 0.0095 0.1557 156

Pop 0.0146 0.0119 0.1773 91.6 0.0092 0.0098 0.1565 264

Adp 0.0146 0.0122 0.1784 94.5 0.0088 0.0095 0.1559 348

Adv 0.0153 0.0139 0.1786 980 0.0094 0.0103 0.1567 8760

CoSam 0.0185 0.0149 0.1807 103 0.0153 0.0168 0.1621 420

Impv% 20.93% 7.48% 1.20% - 61.72% 62.72% 3.45% -

top-K and 𝐶𝑜𝑛(𝑢) as the set of consumed items in test data for user 𝑢. Then we have:

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =
1

|𝑈 |
∑
𝑢∈𝑈

|𝑅𝑒𝑐 (𝑢) ∩𝐶𝑜𝑛(𝑢) |
|𝐶𝑜𝑛(𝑢) | (18)

• Precision@K (Pre@K): This measures the fraction of the top-K items that are indeed consumed by the user:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 =
1

|𝑈 |
∑
𝑢∈𝑈

|𝑅𝑒𝑐 (𝑢) ∩𝐶𝑜𝑛(𝑢) |
|𝑅𝑒𝑐 (𝑢) | (19)

• Normalized Discounted Cumulative Gain (NDCG): This is widely used in information retrieval and it

measures the quality of ranking through discounted importance based on positions. In recommendation,

NDCG is computed as follow:

𝑁𝐷𝐶𝐺 =
1

|𝑈 |
∑
𝑢∈𝑈

𝐷𝐶𝐺𝑢

𝐼𝐷𝐶𝐺𝑢

(20)

where 𝐷𝐶𝐺𝑢 is defined as follow and 𝐼𝐷𝐶𝐺𝑢 is the ideal value of 𝐷𝐶𝐺𝑢 coming from the best ranking.

𝐷𝐶𝐺𝑢 =
∑

𝑖∈𝐶𝑜𝑛 (𝑢)

1

log
2
(𝑟𝑎𝑛𝑘𝑢𝑖 + 1) (21)

where 𝑟𝑎𝑛𝑘𝑢𝑖 represents the rank of the item 𝑖 in the recommended list of the user 𝑢. NDCG can be

interpreted as the ease of finding all consumed items, as higher numbers indicate the consumed items are

higher in the list.

5.2 Comparing with existing samplers (RQ1)
To answer the research question (RQ1), we compare our CoSam with other sampling strategies including:

• Uniformly (Uni): the widely adopted sampling strategy which sample items with equal probability.
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Fig. 6. Pre@5 for different sampling strategy versus the number of iterations and running time.

• Item-Popularity (Pop) [50]: which samples items based on item popularity: 𝑝 (𝑖 |𝑢) ∝ 𝜉𝛼
𝑖
, where 𝜉𝑖 denotes

the popularity of item 𝑖 and the parameter 𝛼 scales its affect.

• Adaptive oversampling (Adp) [35]: The Adaptive sampling strategy to over-sample the “difficult” items for

the MF-based recommendation model.

• Adversarial sampler (Adv): The state-of-the-artmodel-based samplerwith adversarial sampler-recommender

framework. Since the sampler model of [10] [5] requires other side information, we follow [42] [34] and

model the sampler with matrix factorisation.

Also, for fairly comparison, we integrate these samplers into common matrix factorization recommendation

model. Their performance are reported in Table 3.

Performance comparison. Table 3 presents the recommendation performance of the compared sampler

in terms of three evaluation metrics. The boldface font denotes the winner in that column. Overall, CoSam

outperforms all compared methods on all datasets for all metrics. For the sake of clarity, the last row of Table 3 also

show the relative improvements achieved by CoSam over the best baselines. We have following observations: (1)

The informative sampler will boost the recommendation performance. It can be seen from the better performance

of Adv, Ada, CoSam over Uni. (2) The model-based samplers (CoSam and Adv), which will evolve with the training,

outperform these heuristic methods. This result is consistent with our intuition, since the heuristic samplers lack

flexible and usually fail to capture the varying informativeness of instances. (3) CoSam outperforms compared

methods by a large margin. The average improvement of CoSam over best baselines on four datasets is 26.9%,

25.7%, 3.0% in terms of Pre@5, Rec@5, NDCG respectively. Especially in the large sparse dataset Epinions, the

improvements is quite impressive, over 50% in both Pre@5 and Rec@5. It can be attributed to collaborative sampler

model and integrated sampler-recommender framework. We will conduct ablation studies in the subsection 5.4

to analyze the effect of these components.

Comparison in terms of datasets. The gap between CoSam and the best baseline is generally larger on

Epinions, while smaller on Moivelens. This phenomenon can be explained by the different levels of the sparsity

of the datasets. Drawing informative instances from a highly sparse dataset is quite challenging while existing

samplers fail to do so. Another phenomenon can be observed is that scores of metrics are relatively higher on

Moivelens while quite lower on Epinions and Ciao. The reason can also be attributed to the sparsity. In a typical

sparse dataset Epinions, most of users just have a few positive items. It is difficult for a recommendation model to

retrieve such limited positive recommendations as they are buried in a large pile of negative ones.

Running time. Table 3 also presents the training time cost of the compared samplers and figure 6 depicts

Pre@5 (Y-axis) vs. the number of iteration or running time (X-axis) of these methods on the two typically datasets.

The powerful competitor Adv in accuracy spends much more time on sampling. Especially in the largest dataset

Epinions, the recommendation method with Adv requires 2.4 hours for training while Cosam just requires 7

mins. 20 times acceleration will be achieved by our CoSam. The speed up can be attributed to our collaborative
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Fig. 7. Variance of gradients and sampled training loss using different sampling strategies.

sampler, which avoids time-consuming traversal of all items. This way, CoSam has similar time complexity as

these efficient heuristical methods, which aim at fast learning but sacrifice certain flexibility. Their actual running

time are also in the same magnitude.

Variance and training loss. To show the stability and informativeness of samplers, we further conduct a

specific experiments on empirically comparing the variance of the estimated gradient ∇𝐿𝜑 and average training

loss on sampled instances. To do so, we train the models for 50,100,150 epochs and then we generate mini-batch

with various sampling strategy to estimate normalized gradients and training loss. We repeat this process for

1000 times, and calculate the variance of the gradients and average training loss for different sampling strategies.

The final results are averaged over various parameters and presented in Figure 7. The sampler value of variance

suggests the model will be more stable, while the larger values of the sampled training loss indicates the sampled

instances will be more informative. Figure 7 shows that our CoSam outperforms these heuristic samplers and

achieves similar performance with Adv. We remark Adv will sacrifice training efficiency. Also, Adv will increase

the risk of over-fitting as illustrated in Figure 6.

5.3 Effect of CoSam (RQ2)
To answer the research question (RQ2), we apply our CoSam sampling methods into two typical recommendation

models (MF and NCF) and explore how CoSam boosts recommendation performance. We compare the improved

recommendation methods MF-CoSam, NCF-CoSam with following recommendation methods:

• MF [22, 25, 33]: The classic matrix factorization model for implicit feedback data with bernoulli likelihood

and uniformly sampler.

• BPR [36]: The classic pair-wise method for recommendation, coupled with matrix factorization.

• NCF: [19]: The advanced recommendation method modeling user-item interactions with neural network.

We refer to [19] and train the model with uniformly sampler.

• IRGAN[42]: The method that employs generative adversarial model to capture users’ preference over the

items. Here we just report the results of IRGAN on the small dataset LastFM and Movielens due to its

massive time cost on large datasets.

• NGCF [44]: The state-of-the-art graph-based recommendation method, which encodes users and items

based on neural graph network [16] on the user-item interaction graph.

Figure 8 presents the recommendation performance of the compared methods. The improvement from CoSam

is apparent: adopting CoSam consistently boost the recommendation performance. Especially on the large dataset

Epinions, the improvements are over 30% achieved by MF-CoSam (or NCF-CoSam) compared with MF (or NCF).
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Table 4. The performance and running time of CoSam and its variants.

Methods

LastFM Movielens-1M

Pre@5 Rec@5 NDCG Time Pre@5 Rec@5 NDCG Time

Sam-MF-Adv (Adv) 0.1002 0.0897 0.3503 104 0.3691 0.0811 0.5689 1414

Sam-MF-Int 0.1073 0.0957 0.3579 116 0.4043 0.0953 0.5962 1484

Sam-Co-Adv 0.0994 0.0892 0.3454 19 0.3643 0.0805 0.5676 630

Sam-Co-Int(CoSam) 0.1302 0.1162 0.3838 23 0.3772 0.0837 0.5726 672

Methods

Ciao Epinions

Pre@5 Rec@5 NDCG Time Pre@5 Rec@5 NDCG Time

Sam-MF-Adv (Adv) 0.0153 0.0139 0.1786 980 0.0094 0.0103 0.1567 8760

Sam-MF-Int 0.0160 0.0131 0.1797 977 0.0125 0.0134 0.1545 9984

Sam-Co-Adv 0.0154 0.0138 0.1788 102 0.0091 0.0098 0.1562 322

Sam-Co-Int(CoSam) 0.0185 0.0149 0.1807 103 0.0153 0.0168 0.1621 420

Further, we observe that these sampler-enhanced method can beat state-of-the-art recommendation methods,

even if we just employ a relatively simple recommendation model (i.e. MF). This result validate the importance of

the sampling method, which makes nonnegligible contribution on recommendation performance. In fact, the

recommendation model has been well exploited by substantial recent works while the sampler usually become

the effect bottleneck of the recommendation system.
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Table 5. Characteristics of Sam-MF-Int and its variants.

Methods Training criterion

Prediction

with S?

Prediction

with R?

Sam-MF-Int Integrated

√ √

Sam-MF-Int-S Integrated

√ \
Sam-MF-Int-R Integrated \ √

Sam-MF-adv-U Adversarial

√ √

Sam-MF-adv Adversarial \ √

5.4 Ablation study (RQ3)
We further design a detailed ablation study to answer question RQ3. That is, we remove different components at

a time and compare CoSam with its three special cases: Sam-MF-Int, Sam-Co-Adv, Sam-MF-Adv. Here we remark

Sam-X-Y as the sampler with “X” sampler model and “Y” sampler-recommender framework. Here “MF” denotes

matrix factorization model and “Co” denotes collaborative model; “Adv” denotes Adversarial framework and “Int”

denotes integrated framework. Note that Cosam can be remarked as Sam-Co-Int and Adv can be remarked as

Sam-MF-Adv. We integrate these methods into benchmark MF recommendation model to test their performance.

The recommendation performance and training running time are presented in Table 4.

We observe that the method with integrated sampler-recommender framework (Sam-Co-Int, Sam-MF-Int)

outperforms their variants with adversarial framework (Sam-Co-Adv, Sam-MF-Adv). This is due to the ability

of the sampler model has been better exploited and the sampling biases have been refined in the collaborative

framework. For the sampler models comparison, generally, the collaborative sampler model outperformsMF-based

sampler in the collaborative framework, while it performs worse in the adversarial framework. This interesting

phenomenon can be explained as follow: collaborative sampler, which encodes rich interaction information

into sampling, will produce more informative instances. Naturally, it will achieves better performance under

integrated framework. However, when it is applied into adversarial framework, this informative but highly

biased sampler will heavily deteriorate the performance and offset the advantage from informativeness. It is

noteworthy that the collaborative sampler model performs much more efficient than MF-based sampler model.

Thus, collaborative sampler will be more suitable for the modern recommendation system with large item space.

Effect of integrated recommendation. Another interesting ablation experiments has been conducted to

show the effect of integrating S and R into prediction for recommendation. That is, we compare Sam-MF-Int with

following variants:

• Sam-MF-Int-S, Sam-MF-Int-R: The special cases of Sam-MF-Int, which trains S and R based on integrated

framework but make recommendation just based on S (Sam-MF-Int-S) or R (Sam-MF-Int-R).

• Sam-MF-Adv-U: The variant of Sam-MF-Adv, which trains S and R based on adversarial framework but

unifies S and R for recommendation as integrated framework.

Their characteristics are presented in Table 5. Here we choose Sam-MF-Int instead of Sam-Co-Int (CoSam) for

experiments to isolate the effect of collaborative sampler model.

Figure 9 presents the performance of these compared methods. We observe that Sam-MF-Int consistently

outperforms Sam-MF-Int-R and Sam-MF-Int-S, which trains S and R collaboratively but make recommendations

separately. This result validates the effectiveness of unifying S and R into prediction. The performance will degrade

if we only consider one part. R will be biased to focus on these “difficult” instances and its performance on other

relatively “easy” will be deteriorated; Similarly, S is not trained to capture users’ preference individually and thus

Sam-MF-Int-S performs inferior to the many recommendation method. Only when R meets S in recommendation,

they will compensate each other and achieve impressive performance. However, we observe that unifying R and S

into recommendation with adversarial framework is ineffective. Sam-MF-adv-U performs worse instead of better
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Fig. 9. Performance of Sam-MF-Int and its variants.

than Sam-MF-adv. It can be attributed to the different rewards (as discussed in subsection 3.4). In adversarial

framework, S is trained for competition instead of collaboration with R. S and R are not ready for collaborative

prediction.

6 CONCLUSION
In this paper, we present a novel efficient and effective sampling method CoSam. It consists of: (1) a collaborative

sampler model which leverages collaborative signals into sampling and satisfies the desirable property of

normalization, adaption, interaction information awareness, and computational efficiency; (2) an integrated

sampler-recommender framework to refine the sampling bias and to better exploit the ability of the sampler model.

Our extensive experiments on four real-world datasets validate the superiority of the proposed collaborative

sampler and integrated framework.

One interesting direction for future work is to leverage sophisticated graph neural network in sampler process,

to capture more complex affinity between users and items along the interaction graph. Also, effectiveness and

efficiency are dual objectives for sampling strategies. It will be interesting and challenging to design more

advanced sampler meeting both conditions. This kind of sampler is also beneficial to other tasks, such as graph

embedding [14], social influence estimation [38], unbalanced classification[8], etc. Another interesting direction

is to explore dynamic sampling strategy in online recommender system, where user preferences will drift with

time[29].
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