
Model-Agnostic Counterfactual Reasoning for Eliminating
Popularity Bias in Recommender System

Tianxin Wei1, Fuli Feng2∗, Jiawei Chen1, Ziwei Wu1, Jinfeng Yi3 and Xiangnan He1∗
1University of Science and Technology of China, 2National University of Singapore, 3JD AI Research

rouseau@mail.ustc.edu.cn,fulifeng93@gmail.com,cjwustc@ustc.edu.cn
maggiewuzw@gmail.com,yijinfeng@jd.com,xiangnanhe@gmail.com

ABSTRACT
The general aim of the recommender system is to provide personal-
ized suggestions to users, which is opposed to suggesting popular
items. However, the normal training paradigm, i.e., fitting a recom-
mender model to recover the user behavior data with pointwise
or pairwise loss, makes the model biased towards popular items.
This results in the terrible Matthew effect, making popular items be
more frequently recommended and become even more popular. Ex-
isting work addresses this issue with Inverse Propensity Weighting
(IPW), which decreases the impact of popular items on the training
and increases the impact of long-tail items. Although theoretically
sound, IPW methods are highly sensitive to the weighting strategy,
which is notoriously difficult to tune.

In this work, we explore the popularity bias issue from a novel
and fundamental perspective — cause-effect. We identify that popu-
larity bias lies in the direct effect from the item node to the ranking
score, such that an item’s intrinsic property is the cause of mistak-
enly assigning it a higher ranking score. To eliminate popularity
bias, it is essential to answer the counterfactual question that what
the ranking score would be if the model only uses item property. To
this end, we formulate a causal graph to describe the important
cause-effect relations in the recommendation process. During train-
ing, we perform multi-task learning to achieve the contribution of
each cause; during testing, we perform counterfactual inference
to remove the effect of item popularity. Remarkably, our solution
amends the learning process of recommendation which is agnos-
tic to a wide range of models — it can be easily implemented in
existing methods. We demonstrate it on Matrix Factorization (MF)
and LightGCN [20], which are representative of the conventional
and SOTA model for collaborative filtering. Experiments on five
real-world datasets demonstrate the effectiveness of our method.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Recommendation, Popularity Bias, Causal Reasoning

* Fuli Feng and Xiangnan He are Corresponding Authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467289

Figure 1: An illustration of popularity bias in recommender
system. Items are organized into groups w.r.t. the popularity
in the training set wherein the background histograms indi-
cate the ratio of items in each group, and the vertical axis
represents the average recommendation frequency.

ACM Reference Format:
Tianxin Wei1, Fuli Feng2∗, Jiawei Chen1, Ziwei Wu1, Jinfeng Yi3 and Xiang-
nan He1∗. 2021. Model-Agnostic Counterfactual Reasoning for Eliminating
Popularity Bias in Recommender System. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’21),
August 14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3447548.3467289

1 INTRODUCTION
Personalized recommendation has revolutionized amyriad of online
applications such as e-commerce [52, 55, 60], search engines [43],
and conversational systems [29, 45]. A huge number of recom-
mender models [19, 26, 49] have been developed, for which the
default optimization choice is reconstructing historical user-item
interactions. However, the frequency distribution of items is never
even in the interaction data, which is affected by many factors like
exposure mechanism, word-of-mouth effect, sales campaign, item
quality, etc. In most cases, the frequency distribution is long-tail,
i.e., the majority of interactions are occupied by a small number of
popular items. This makes the classical training paradigm biased
towards recommending popular items, falling short to reveal the
true preference of users [2].

Real-world recommender systems are often trained and updated
continuously using real-time user interactions with training data
and test data NOT independent and identically distributed (non-
IID) [11, 58]. Figure 1 provides an evidence of popularity bias on
a real-world Adressa dataset [18], where we train a standard MF
and LightGCN [20] and count the frequency of items in the top-𝐾
recommendation lists of all users. The blue line shows the item
frequency of the real non-IID test dataset, which is what we ex-
pect. As can be seen, more popular items in the training data are

https://doi.org/10.1145/3447548.3467289
https://doi.org/10.1145/3447548.3467289

(a) User-item matching (b) Incorporating item
popularity

(c) Incorporating item
popularity and user con-
formity

Figure 2: Causal graph for (a) user-item matching; (b) incor-
porating item popularity; and (c) incorporating user confor-
mity. I: item. U: user. K: matching features between user and
item. Y: ranking score (e.g., the probability of interaction).

recommended much more frequently than expected, demonstrat-
ing a severe popularity bias. As a consequence, a model is prone
to recommending items simply from their popularity, rather than
user-item matching. This phenomenon is caused by the training
paradigm, which identifies that recommending popular items more
frequently can achieve lower loss thus updates parameters towards
that direction. Unfortunately, such popularity bias will hinder the
recommender from accurately understanding the user preference
and decrease the diversity of recommendations. Worse still, the
popularity bias will cause the Matthew Effect [36] — popular items
are recommended more and become even more popular.

To address the issues of normal training paradigm, a line of
studies push the recommender training to emphasize the long-tail
items [7, 31]. The idea is to downweigh the influence from popular
items on recommender training, e.g., re-weighting their interac-
tions in the training loss [30, 50], incorporating balanced training
data [7] or disentangling user and item embeddings [58]. However,
these methods lack fine-grained consideration of how item pop-
ularity affects each specific interaction, and a systematic view of
the mechanism of popularity bias. For instance, the interactions on
popular items will always be downweighted than a long-tail item
regardless of a popular item better matches the preference of the
user. We believe that instead of pushing the recommender to the
long-tail in a blind manner, the key of eliminating popularity bias
is to understand how item popularity affects each interaction.

Towards this end, we explore the popularity bias from a funda-
mental perspective — cause-effect, which has received little scrutiny
in recommender systems. We first formulate a causal graph (Figure
2(c)) to describe the important cause-effect relations in the recom-
mendation process, which corresponds to the generation process
of historical interactions. In our view, three main factors affect the
probability of an interaction: user-item matching, item popular-
ity, and user conformity. However, existing recommender models
largely focus on the user-item matching factor [22, 53] (Figure 2(a)),
ignoring how the item popularity affects the interaction probability
(Figure 2(b)). Suppose two items have the same matching degree
for a user, the item that has larger popularity is more likely to be
known by the user and thus consumed. Furthermore, such impacts
of item popularity could vary for different users, e.g., some users
are more likely to explore popular items while some are not. As
such, we further add a direct edge from the user node (𝑈) to the
ranking score (𝑌) to constitute the final causal graph (Figure 2(c)).
To eliminate popularity bias effectively, it is essential to infer the

Figure 3: An example of counterfactual inference.

direct effect from the item node (𝐼) to the ranking score (𝑌), so as
to remove it during recommendation inference.

To this end, we resort to causal inference which is the science
of analyzing the relationship between a cause and its effect [35].
According to the theory of counterfactual inference [35], the direct
effect of 𝐼 → 𝑌 can be estimated by imagining a world where
the user-item matching is discarded, and an interaction is caused
by item popularity and user conformity. To conduct popularity
debiasing, we just deduct the ranking score in the counterfactual
world from the overall ranking score. Figure 3 shows a toy example
where the training data is biased towards iPhone, making the model
score higher on iPhone even though the user is more interested in
basketball. Such bias is removed in the inference stage by deducting
the counterfactual prediction.

In our method, to pursue a better learning of user-item matching,
we construct two auxiliary tasks to capture the effects of 𝑈 → 𝑌

and 𝐼 → 𝑌 . The model is trained jointly on the main task and
two auxiliary tasks. Remarkably, our approach is model-agnostic
and we implement it on MF [28] and LightGCN [20] to demon-
strate effectiveness. To summarize, this work makes the following
contributions:
• Presenting a causal view of the popularity bias in recommender
systems and formulating a causal graph for recommendation.

• Proposing a model-agnostic counterfactual reasoning (MACR)
framework that trains the recommender model according to the
causal graph and performs counterfactual inference to eliminate
popularity bias in the inference stage of recommendation.

• Evaluating on five real-world recommendation datasets to demon-
strate the effectiveness and rationality of MACR.

2 PROBLEM DEFINITION
LetU = {𝑢1, 𝑢2, ...𝑢𝑛} and I = {𝑖1, 𝑖2, ...𝑖𝑚} denote the set of users
and items, respectively, where 𝑛 is the number of users, and𝑚 is
the number of items. The user-item interactions are represented by
𝒀 ∈ R𝑛×𝑚 where each entry,

𝑦𝑢𝑖 =

{
1, if user 𝑢 has interacted with item 𝑖 ,
0, otherwise.

(1)

The goal of recommender training is to learn a scoring function
𝑓 (𝑢, 𝑖 |𝜃) from 𝑌 , which is capable of predicting the preference of
a user 𝑢 over item 𝑖 . Typically, the learned recommender model
is evaluated on a set of holdout (e.g., randomly or split by time)
interactions in the testing stage. However, the traditional evaluation
may not reflect the ability to predict user true preference due to the
existence of popularity bias in both training and testing. Aiming
to focus more on user preference, we follow prior work [7, 30]
to perform debiased evaluation where the testing interactions are

Figure 4: Example of causal graph where I, Y, and K denote
cause, effect andmediator variable, respectively. Gray nodes
mean the variables are at reference status (e.g., 𝐼 = 𝑖∗).

sampled to be a uniform distribution over items. This evaluation
also can examine a model’s ability in handling the popularity bias.

3 METHODOLOGY
In this section, we first detail the key concepts about counterfactual
inference (Section 3.1), followed by the causal view of the recom-
mendation process (Section 3.2), the introduction of the MACR
framework (Section 3.3), and its rationality for eliminating the pop-
ularity bias (Section 3.4). Lastly, we discuss the possible extension
of MACR when the side information is available (Section 3.5).

3.1 Preliminaries
• Causal Graph. The causal graph is a directed acyclic graph 𝐺 =

{𝑉 , 𝐸}, where 𝑉 denotes the set of variables and 𝐸 represents the
cause-effect relations among variables [35]. In a causal graph, a
capital letter (e.g., 𝐼) denotes a variable and a lowercase letter (e.g.,
𝑖) denotes its observed value. An edge means the ancestor node is
a cause (𝐼) and the successor node is an effect (𝑌). Take Figure 4 as
an example, 𝐼 → 𝑌 means there exists a direct effect from 𝐼 to 𝑌 .
Furthermore, the path 𝐼 → 𝐾 → 𝑌 means 𝐼 has an indirect effect
on 𝑌 via a mediator 𝐾 . According to the causal graph, the value of
𝑌 can be calculated from the values of its ancestor nodes, which is
formulated as:

𝑌𝑖,𝑘 = 𝑌 (𝐼 = 𝑖, 𝐾 = 𝑘), (2)
where 𝑌 (.) means the value function of 𝑌 . In the same way, the
value of the mediator can be obtained through 𝑘 = 𝐾𝑖 = 𝐾 (𝐼 = 𝑖). In
particular, we can instantiate 𝐾 (𝐼) and 𝑌 (𝐼 , 𝐾) as neural operators
(e.g., fully-connected layers), and compose a solution that predicts
the value of Y from input I.

• Causal Effect. The causal effect of 𝐼 on 𝑌 is the magnitude
by which the target variable 𝑌 is changed by a unit change in an
ancestor variable 𝐼 [35]. For example, the total effect (TE) of 𝐼 = 𝑖
on 𝑌 is defined as:

𝑇𝐸 = 𝑌𝑖,𝐾𝑖
− 𝑌𝑖∗,𝐾𝑖∗ , (3)

which can be understood as the difference between two hypothetical
situations 𝐼 = 𝑖 and 𝐼 = 𝑖∗. 𝐼 = 𝑖∗ refers to a the situation where the
value of 𝐼 is muted from the reality, typically set the value as null.𝐾𝑖∗
denotes the value of 𝐾 when 𝐼 = 𝑖∗. Furthermore, according to the
structure of the causal graph, TE can be decomposed into natural
direct effect (NDE) and total indirect effect (TIE) which represent
the effect through the direct path 𝐼 → 𝑌 and the indirect path
𝐼 → 𝐾 → 𝑌 , respectively [35]. NDE expresses the value change of
𝑌 with 𝐼 changing from 𝑖∗ to 𝑖 on the direct path 𝐼 → 𝑌 , while 𝐾
is set to the value when 𝐼 = 𝑖∗, which is formulated as:

𝑁𝐷𝐸 = 𝑌𝑖,𝐾𝑖∗ − 𝑌𝑖∗,𝐾𝑖∗ , (4)
where 𝑌𝑖,𝐾𝑖∗ = 𝑌 (𝐼 = 𝑖, 𝐾 = 𝐾 (𝐼 = 𝑖∗)). The calculation of 𝑌𝑖 , 𝐾𝑖∗ is
a counterfactual inference since it requires the value of the same
variable 𝐼 to be set with different values on different paths (see

Figure 4). Accordingly, TIE can be obtained by subtracting NDE
from TE as following:

𝑇 𝐼𝐸 = 𝑇𝐸 − 𝑁𝐷𝐸 = 𝑌𝑖,𝐾𝑖
− 𝑌𝑖,𝐾𝑖∗ , (5)

which represents the effect of 𝐼 on 𝑌 through the indirect path
𝐼 → 𝐾 → 𝑌 .

3.2 Causal Look at Recommendation
In Figure 2(a), we first abstract the causal graph of most existing rec-
ommender models, where𝑈 , 𝐼 , 𝐾 , and 𝑌 represent user embedding,
item embedding, user-item matching features, and ranking score,
respectively. The models have two main components: a matching
function𝐾 (𝑈 , 𝐼) that learns thematching features between user and
item; and the scoring function 𝑌 (𝐾). For instance, the most popular
MF model implements these functions as an element-wise product
between user and item embeddings, and a summation across embed-
ding dimensions. As to its neural extension NCF [22], the scoring
function is replaced with a fully-connected layer. Along this line, a
surge of attention has been paid to the design of these functions.
For instance, LightGCN [20] and NGCF [49] employ graph con-
volution to perform matching feature learning, ONCF [21] adopts
convolutional layers as the scoring function. However, these mod-
els discards the user conformity and item popularity that directly
affect the ranking score.

A more complete causal graph for recommendation is depicted
in Figure 2(c) where the paths 𝑈 → 𝑌 and 𝐼 → 𝑌 represent the
direct effects from user and item on the ranking score. A few recom-
mender models follow this causal graph, e.g., the MFwith additional
terms of user and item biases [28] and NeuMF [22] which takes
the user and item embeddings as additional inputs of its scoring
function. While all these models perform inference with a forward
propagation, the causal view of the inference over Figure 2(a) and
Figure 2(c) are different, which are 𝑌𝐾𝑢,𝑖 and 𝑌𝑢,𝑖,𝐾𝑢,𝑖 , respectively.
However, the existing work treats them equally in both training and
testing stages. For briefness, we use 𝑦𝑢𝑖 to represent the ranking
score, which is supervised to recover the historical interactions by
a recommendation loss such as the BCE loss [54]:
𝐿𝑂 =

∑
(𝑢,𝑖) ∈𝐷

−𝑦𝑢𝑖 log(𝜎 (𝑦𝑢𝑖)) − (1 − 𝑦𝑢𝑖) log(1 − 𝜎 (𝑦𝑢𝑖)), (6)

where 𝐷 denotes the training set and 𝜎 (·) denotes the sigmoid
function. 𝑦𝑢,𝑖 means either 𝑌𝐾𝑢,𝑖 or 𝑌𝑢,𝑖,𝐾𝑢,𝑖 . In the testing stage,
items with higher ranking scores are recommended to users.

Most of these recommender model suffer from popularity bias
(see Figure 1). This is because𝑦𝑢𝑖 is the likelihood of the interaction
between user 𝑢 and item 𝑖 , which is estimated from the training
data and inevitably biased towards popular items in the data. From
the causal perspective, item popularity directly affects 𝑦𝑢𝑖 via 𝐼 →
𝑌 , which bubbles the ranking scores of popular items. As such,
blocking the direct effect from item popularity on 𝑌 will eliminate
the popularity bias.

3.3 Model-Agnostic Counterfactual Reasoning
To this end, we devise a model-agnostic counterfactual reasoning
(MACR) framework, which performs multi-task learning for recom-
mender training and counterfactual inference for making debiased
recommendation. As shown in Figure 5, the framework follows the
causal graph in Figure 2(c), where the three branches correspond
to the paths𝑈 → 𝑌 ,𝑈&𝐼 → 𝐾 → 𝑌 , and 𝐼 → 𝑌 , respectively. This

Figure 5: The framework of MACR. The orange rectangles
denote themain branch, i.e., the conventional recommender
system. The blue and green rectangles denote the user and
item modules, respectively.

framework can be implemented over any existing recommender
models that follow the structure of 𝑈&𝐼 → 𝐾 → 𝑌 by simply
adding a user module 𝑌𝑢 (𝑈) and an item module 𝑌𝑖 (𝐼). These mod-
ules project the user and item embeddings into ranking scores and
can be implemented as multi-layer perceptrons. Formally,

• User-item matching: 𝑦𝑘 = 𝑌𝑘 (𝐾 (𝑈 = 𝑢, 𝐼 = 𝑖)) is the ranking
score from the existing recommender, which reflects to what
extent the item 𝑖 matches the preference of user 𝑢.

• Item module: 𝑦𝑖 = 𝑌𝑖 (𝐼 = 𝑖) indicates the influence from item
popularity where more popular item would have higher score.

• User module: 𝑦𝑢 = 𝑌𝑢 (𝑈 = 𝑢) shows to what extent the user
𝑢 would interact with items no matter whether the preference
is matched. Considering the situation where two users are ran-
domly recommended the same number of videos, one user may
click more videos due to a broader preference or stronger con-
formity. Such “easy” user is expected to obtain a higher value of
𝑦𝑢 and can be affected more by item popularity.

As the training objective is to recover the historical interactions
𝑦𝑢𝑖 , the three branches are aggregated into a final prediction score:

𝑦𝑢𝑖 = 𝑦𝑘 ∗ 𝜎 (𝑦𝑖) ∗ 𝜎 (𝑦𝑢), (7)
where 𝜎 (·) denotes the sigmoid function. It scales 𝑦𝑢 and 𝑦𝑖 to be
click probabilities in the range of [0, 1] so as to adjust the extent of
relying upon user-item matching (i.e. 𝑦𝑘) to recover the historical
interactions. For instance, to recover the interaction between an
inactive user and unpopular item, the model will be pushed to
highlight the user-item matching, i.e. enlarging 𝑦𝑘 .

Recommender Training. Similar to (6), we can still apply a recom-
mendation loss over the overall ranking score 𝑦𝑢𝑖 . To achieve the
effect of the user and item modules, we devise a multi-task learning
schema that applies additional supervision over𝑦𝑢 and𝑦𝑖 . Formally,
the training loss is given as:

𝐿 = 𝐿𝑂 + 𝛼 ∗ 𝐿𝐼 + 𝛽 ∗ 𝐿𝑈 , (8)

(a) Real world (b) Conterfactual world

Figure 6: Comparison between real world and counterfac-
tual world causal graphs in recommender systems.

where 𝛼 and 𝛽 are trade-off hyper-parameters. Similar as 𝐿𝑂 , 𝐿𝐼
and 𝐿𝑈 are also recommendation losses:

𝐿𝑈 =
∑

(𝑢,𝑖) ∈𝐷
−𝑦𝑢𝑖 log(𝜎 (𝑦𝑢)) − (1 − 𝑦𝑢𝑖) log(1 − 𝜎 (𝑦𝑢)),

𝐿𝐼 =
∑

(𝑢,𝑖) ∈𝐷
−𝑦𝑢𝑖 log(𝜎 (𝑦𝑖)) − (1 − 𝑦𝑢𝑖) log(1 − 𝜎 (𝑦𝑖)).

Counterfactual Inference. As aforementioned, the key to elim-
inate the popularity bias is to remove the direct effect via path
𝐼 → 𝑌 from the ranking score 𝑦𝑢𝑖 . To this end, we perform recom-
mendation according to:

𝑦𝑘 ∗ 𝜎 (𝑦𝑖) ∗ 𝜎 (𝑦𝑢) − 𝑐 ∗ 𝜎 (𝑦𝑖) ∗ 𝜎 (𝑦𝑢), (9)
where 𝑐 is a hyper-parameter that represents the reference status of
𝑦𝑘 . The rationality of the inference will be detailed in the following
section. Intuitively, the inference can be understood as an adjust-
ment of the ranking according to 𝑦𝑢𝑖 . Assuming two items 𝑖 and
𝑗 with 𝑦𝑢𝑖 slightly lower than 𝑦𝑢 𝑗 , item 𝑗 will be ranked in front
of 𝑖 in the common inference. Our adjustment will affect if item 𝑗

is much popular than 𝑖 where 𝑦 𝑗 >> 𝑦𝑖 . Due to the subtraction of
the second part, the less popular item 𝑖 will be ranked in front of j..
The scale of such adjustment is user-specific and controlled by 𝑦𝑢
where a larger adjustment will be conducted for “easy” users.

3.4 Rationality of the Debiased Inference
As shown in Figure 2(c), 𝐼 influences 𝑌 through two paths, the
indirect path 𝐼 → 𝐾 → 𝑌 and the direct path 𝐼 → 𝑌 . Following the
counterfactual notation in Section 3.1, we calculate the NDE from 𝐼

to 𝑌 through counterfactual inference where a counterfactual rec-
ommender system (Figure 6(b)) assigns the ranking score without
consideration of user-item matching. As can be seen, the indirect
path is blocked by feeding feature matching function 𝐾 (𝑈 , 𝐼) with
the reference value of 𝐼 , 𝐾𝑢∗,𝑖∗ . Formally, the NDE is given as:
𝑁𝐷𝐸 = 𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖, 𝐾 = 𝐾𝑢∗,𝑖∗) − 𝑌 (𝑈 = 𝑢∗, 𝐼 = 𝑖∗, 𝐾 = 𝐾𝑢∗,𝑖∗),
where 𝑢∗ and 𝑖∗ denote the reference values of𝑈 and 𝐼 , which are
typically set as the mean of the corresponding variables, i.e. the
mean of user and item embeddings.

According to Equation 3, the TE from 𝐼 to 𝑌 can be written as:
𝑇𝐸 = 𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖, 𝐾 = 𝐾𝑢,𝑖) − 𝑌 (𝑈 = 𝑢∗, 𝐼 = 𝑖∗, 𝐾 = 𝐾𝑢∗,𝑖∗) .
Accordingly, eliminating popularity bias can be realized by re-

ducing 𝑁𝐷𝐸 from 𝑇𝐸, which is formulated as:
𝑇𝐸−𝑁𝐷𝐸 = 𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖, 𝐾 = 𝐾𝑢,𝑖) −𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖, 𝐾 = 𝐾𝑢∗,𝑖∗),

(10)

Table 1: Statistics of five different datasets.

Users Items Interactions Sparsity
Adressa 13,485 744 116,321 0.011594
Globo 158,323 12,005 2,520,171 0.001326
ML10M 69,166 8,790 5,000,415 0.008225
Yelp 31,668 38,048 1,561,406 0.001300
Gowalla 29,858 40,981 1,027,370 0.000840

Recall that the ranking score is calculated according to Equation 7.
As such, we have 𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖, 𝐾 = 𝐾𝑢,𝑖) = 𝑦𝑘 ∗𝜎 (𝑦𝑖) ∗𝜎 (𝑦𝑢) and
𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖, 𝐾 = 𝐾𝑢∗,𝑖∗) = 𝑐 ∗ 𝜎 (𝑦𝑖) ∗ 𝜎 (𝑦𝑢) where 𝑐 denotes the
value𝑦𝑘 with𝐾 = 𝐾𝑢∗,𝑖∗ . In this way, we obtain the ranking schema
for the testing stage as Equation 9. Recall that𝑇 𝐼𝐸 = 𝑇𝐸−𝑁𝐷𝐸, the
key difference of the proposed counterfactual inference and normal
inference is using TIE to rank items rather than TE. Algorithm in
Appendix A describes the procedure of our method.

3.5 Discussion
There are usually multiple causes for one item click, such as items’
popularity, category, and quality. In this work, we focus on the bias
revealed by the interaction frequency. As an initial attempt to solve
the problem from the perspective of cause-effect, we ignoring the
effect of other factors. Due to the unavailability of side informa-
tion [39] on such factors or the exposure mechanism to uncover
different causes for the recommendation, it is also non-trivial to
account for such factors.

As we can access such side information, we can simply extend
the proposed MACR framework by incorporating such information
into the causal graph as additional nodes. Then we can reveal the
reasons that cause specific recommendations and try to further
eliminate the bias, which is left for future exploration.

4 EXPERIMENTS
In this section, we conduct experiments to evaluate the performance
of our proposed MACR. Our experiments are intended to answer
the following research questions:
• RQ1: Does MACR outperform existing debiasing methods?
• RQ2: How do different hyper-parameter settings (e.g. 𝛼, 𝛽, 𝑐)
affect the recommendation performance?

• RQ3:How do different components in our framework contribute
to the performance?

• RQ4: How does MACR eliminate the popularity bias?

4.1 Experiment Settings
Datasets. Five real-world benchmark datasets are used in our

experiments: ML10M is the widely-used [6, 40, 59] dataset from
MovieLens with 10M movie ratings. While it is an explicit feed-
back dataset, we have intentionally chosen it to investigate the
performance of learning from the implicit signal. To this end, we
transformed it into implicit data, where each entry is marked as 0
or 1 indicating whether the user has rated the item; Adressa [18]
and Globo [14] are two popular datasets for news recommendation;
Also, the datasets Gowalla and Yelp from LightGCN [20] are used
for a fair comparison. All the datasets above are publicly available
and vary in terms of domain, size, and sparsity. The statistics of
these datasets are summarized in Table 1.

Evaluation. Note that the conventional evaluation strategy on
a set of holdout interactions does not reflect the ability to pre-
dict user’s preference, as it still follows the long tail distribution
[58]. Consequently, the test model can still perform well even if it
only considers popularity and ignores users’ preference [58]. Thus,
the conventional evaluation strategy is not appropriate for test-
ing whether the model suffers from popularity bias, and we need
to evaluate on the debiased data. To this end, we follow previous
works [7, 30, 58] to simulate debiased recommendation where the
testing interactions are sampled to be a uniform distribution over
items. In particular, we randomly sample 10% interactions with
equal probability in terms of items as the test set, another 10% as
the validation set, and leave the others as the biased training data1.
We report the all-ranking performance w.r.t. three widely used met-
rics: Hit Ratio (HR), Recall, and Normalized Discounted Cumulative
Gain (NDCG) cut at 𝐾 .

4.1.1 Baselines. We implement our MACR with the classic MF
(MACR_MF) and the state-of-the-art LightGCN (MACR_LightGCN)
to explore how MACR boosts recommendation performance. We
compare our methods with the following baselines:
• MF [28]: This is a representative collaborative filtering model
as formulated in Section 3.2.

• LightGCN [20]: This is the state-of-the-art collaborative filter-
ing recommendation model based on light graph convolution as
illustrated in Section 3.2.

• ExpoMF [31]: A probabilistic model that separately estimates
the user preferences and the exposure.

• CausE_MF, CausE_LightGCN [7]: CausE is a domain adapta-
tion algorithm that learns from debiased datasets to benefit the
biased training. In our experiments, we separate the training set
into debiased and biased ones to implement this method. Further,
we apply CausE into two recommendation models (i.e. MF and
LightGCN) for fair comparisons. Similar treatments are used for
the following debias strategy.

• BS_MF, BS_LightGCN [28]: BS learns a biased score from the
training stage and then remove the bias in the prediction in the
testing stage. The prediction function is defined as:𝑦𝑢𝑖 = 𝑦𝑘 + 𝑏𝑖 ,
where 𝑏𝑖 is the bias term of the item 𝑖 .

• Reg_MF, Reg_LightGCN [2]: Reg is a regularization-based
approach that intentionally downweights the short tail items,
covers more items, and thus improves long tail recommendation.

• IPW_MF, IPW_LightGCN: [30, 42] IPW Adds the standard
Inverse Propensity Weight to reweight samples to alleviate item
popularity bias.

• DICE_MF, DICE_LightGCN: [58] This is a state-of-the-art
method for learning causal embedding to cope with popular-
ity bias problem. It designs a framework with causal-specific data
to disentangle interest and popularity into two sets of embedding.
We used the code provided by its authors.

As we aim to model the interactions between users and items, we
do not compare with models that use side information. We leave
out the comparison with other collaborative filtering models, such
as NeuMF [22] and NGCF [49], because LightGCN [20] is the state-
of-the-art collaborative filtering method at present. Implementation
details and detailed parameter settings of the models can be found
in Appendix B.

1We refer to [7, 30, 58] for details on extracting an debiased test set from biased data.

Table 2: The performance evaluation of the compared methods with 𝐾 = 20. Rec means Recall. The bold-face font denotes the
winner in that column. Note that the improvement achieved by MACR is significant (𝑝-value << 0.05).

Adressa Globo ML10M Yelp2018 Gowalla
HR Rec NDCG HR Rec NDCG HR Rec NDCG HR Rec NDCG HR Rec NDCG

MF 0.111 0.085 0.034 0.020 0.003 0.002 0.058 0.009 0.008 0.071 0.006 0.009 0.174 0.046 0.032
ExpoMF 0.112 0.090 0.037 0.022 0.005 0.003 0.061 0.009 0.008 0.071 0.006 0.009 0.175 0.048 0.034
CausE_MF 0.112 0.084 0.037 0.023 0.005 0.003 0.054 0.008 0.007 0.066 0.005 0.008 0.166 0.045 0.032
BS_MF 0.113 0.090 0.038 0.021 0.005 0.003 0.060 0.009 0.008 0.071 0.006 0.010 0.175 0.046 0.033
Reg_MF 0.093 0.066 0.033 0.019 0.003 0.002 0.051 0.009 0.007 0.064 0.005 0.008 0.161 0.044 0.030
IPW_MF 0.128 0.096 0.039 0.021 0.004 0.003 0.041 0.006 0.005 0.072 0.006 0.010 0.174 0.048 0.033
DICE_MF 0.133 0.098 0.041 0.033 0.007 0.006 0.055 0.011 0.007 0.082 0.008 0.011 0.177 0.052 0.033
MACR_MF 0.140 0.109 0.050 0.112 0.046 0.026 0.140 0.041 0.024 0.135 0.026 0.019 0.252 0.077 0.050
LightGCN 0.123 0.098 0.040 0.017 0.005 0.003 0.038 0.006 0.005 0.061 0.004 0.009 0.172 0.045 0.032

CausE_LightGCN 0.115 0.082 0.037 0.014 0.005 0.003 0.036 0.005 0.005 0.061 0.005 0.009 0.173 0.046 0.033
BS_LightGCN 0.139 0.109 0.047 0.023 0.005 0.004 0.038 0.006 0.005 0.061 0.005 0.009 0.178 0.048 0.035
Reg_LightGCN 0.127 0.098 0.039 0.016 0.005 0.003 0.035 0.005 0.005 0.058 0.004 0.008 0.165 0.045 0.030
IPW_LightGCN 0.139 0.107 0.047 0.018 0.005 0.003 0.037 0.006 0.005 0.071 0.005 0.009 0.174 0.045 0.032
DICE_LightGCN 0.141 0.111 0.046 0.046 0.012 0.008 0.062 0.014 0.009 0.093 0.012 0.013 0.185 0.054 0.036
MACR_LightGCN 0.158 0.127 0.052 0.132 0.059 0.030 0.155 0.049 0.029 0.148 0.031 0.018 0.254 0.077 0.051

4.2 Results (RQ1)
Table 2 presents the recommendation performance of the compared
methods in terms of HR@20, Recall@20, and NDCG@20. The bold-
face font denotes the winner in that column. Overall, our MACR
consistently outperforms all compared methods on all datasets for
all metrics. The main observations are as follows:

• In all cases, our MACR boosts MF or LightGCN by a large mar-
gin. Specifically, the average improvement of MACR_MF over
MF on the five datasets is 153.13% in terms of HR@20 and the
improvement of MACR_LightGCN over LightGCN is 241.98%,
which are rather substantial. These impressive results demon-
strate the effectiveness of our multi-task training schema and
counterfactual reasoning, even if here we just use the simple item
and user modules. MACR potentially can be further improved by
designing more sophisticated models.

• In most cases, LightGCN performs worse than MF, but in reg-
ular dataset splits, as reported in [20], LightGCN is usually a
performing-better approach. As shown in Figure 1, with the
same training set, we can see that the average recommendation
frequency of popular items on LightGCN is visibly larger than
MF. This result indicates that LightGCN is more vulnerable to
popularity bias. The reason can be attributed to the embedding
propagation operation in LightGCN, where the influence of pop-
ular items is spread on the user-item interaction graph which
further amplifies the popularity bias. However, in our MACR
framework, MACR_LightGCN performs better than MACR_MF.
This indicates that our framework can substantially alleviate the
popularity bias.

• In terms of datasets, we can also find that the improvements over
the Globo dataset are extremely large. This is because Globo is a
large-scale news dataset, and the item popularity distribution is
particularly skewed. Popular news in Globo is widely read, while
some other unpopular news has almost no clicks. This result
indicates our model’s capability of addressing popularity bias,
especially on long-tailed datasets.

• As to baselines for popularity debias, Reg method [2] have limited
improvement over the basic models and even sometimes perform
even worse. The reason is that Reg simply downweights popular
items without considering their influence on each interaction.

(a) MACR_LightGCN (b) MACR_MF

Figure 7: Effect of 𝑐 on MACR_LightGCN and MACR_MF
w.r.t HR@20.

CausE also performs badly sometimes as it relies on the debiased
training set, which is usually relatively small and the model is
hard to learn useful information from. BS and IPW methods can
alleviate the bias issue to a certain degree. DICE achieved the
best results among the baselines. This indicates the significance
of considering popularity as a cause of interaction.

In Appendix C.1, we also report our experimental results on Adressa
dataset w.r.t. different values of 𝐾 in the metrics for more compre-
hensive evaluation.

4.3 Case Study
4.3.1 Effect of Hyper-parameters (RQ2). Our framework has three
important hyper-parameters, 𝛼 , 𝛽 , and 𝑐 . Due to space limitation,
we provide the results of parameter sensitivity analysis of 𝛼 , 𝛽 in
Appendix C.2.

The hyper-parameter 𝑐 as formulated in Eq. (9) controls the de-
gree to which the intermediate matching preference is blocked
in prediction. We conduct experiments on the Adressa dataset on
MACR_LightGCN and MACR_MF and test their performance in
terms of HR@20. As shown in Figure 7, taking MACR_LightGCN
as an instance, as 𝑐 varies from 0 to 29, the model performs in-
creasingly better while further increasing 𝑐 is counterproductive.
This illustrates that the proper degree of blocking intermediate
matching preference benefits the popularity debias and improves
the recommendation performance.

Compared with MACR_MF, MACR_LightGCN is more sensitive
to 𝑐 , as its performance drops more quickly after the optimum.

Table 3: Effect of user and item branch on MACR_MF.
HR@20 Recall@20 NDCG@20

MACR_MF 0.140 0.109 0.050
MACR_MF w/o user branch 0.137 0.106 0.046
MACR_MF w/o item branch 0.116 0.089 0.038

MACR_MF w/o 𝐿𝐼 0.124 0.096 0.043
MACR_MF w/o 𝐿𝑈 0.138 0.108 0.048

(a) LightGCN (b) MF

Figure 8: Frequency of different item groups recommended
by LightGCN (MF) and MACR_LightGCN (MACR_MF).

(a) LightGCN (b) MF

Figure 9: Average item recall in different item groups on
Adressa.
It indicates that LightGCN is more vulnerable to popularity bias,
which is consistent with our findings in Section 4.2.

4.3.2 Effect of User Branch and Item Branch (RQ3). Note that our
MACR not only incorporates user/item’s effect in the loss function
but also fuse them in the predictions. To investigate the integral
effects of user and item branch, we conduct ablation studies on
MACR_MF on the Adressa dataset and remove different compo-
nents at a time for comparisons. Specifically, we compare MACR
with its four special cases: MACR_MFw/o user (item) branch, where
user (or item) branch has been removed; MACR_MF w/o 𝐿𝐼 (𝐿𝑈),
where we just simply remove 𝐿𝐼 (𝐿𝑈) to block the effect of user (or
item) branch on training but retain their effect on prediction.

From Table 3 we can find that both user branch and item branch
boosts recommendation performance. Compared with removing
the user branch, the model performs much worse when removing
the item branch. Similarly, compared with removing 𝐿𝑈 , removing
𝐿𝐼 also harms the performance more heavily. This result validates
that item popularity bias has more influence than user conformity
on the recommendation.

Moreover, compared with simply removing 𝐿𝐼 and 𝐿𝑈 , removing
the user/item branch makes the model perform much worse. This
result validates the significance of further fusing the item and user
influence in the prediction.

4.3.3 Debias Capability (RQ4). We then investigate whether our
model alleviates the popularity bias issue. We compare MACR_MF
and MACR_LightGCN with their basic models, MF and LightGCN.

(a) LightGCN (b) MF
Figure 10: Average 𝜎 (𝑦𝑢) comparison for different user
groups on Adressa.

(a) LightGCN (b) MF

Figure 11: Average 𝜎 (𝑦𝑖) comparison for different item
groups on Adressa.

As shown in Figure 8, we show the recommendation frequency of
different item groups. We can see that our methods indeed reduce
the recommendations frequency of popular items and recommend
more items that are less popular. Then we conduct in Figure 9 an
experiment to show the item recommendation recall in different
item groups. In this experiment, we recommend each user 20 items
and calculate the item recall. If an item appears 𝑁 times in the
test data, its item recall is the proportion of it being accurately
recommended to test users. We have the following findings.
• The most popular item group has the greatest recall increase, but
our methods in Figure 8 show the recommendations frequency of
popular items is reduced. It means that traditional recommender
systems (MF, LightGCN) are prone to recommend more popular
items to unrelated users due to popularity bias. In contrast, our
MACR reduces the item’s direct effect and recommends popular
items mainly to suitable users. This confirms the importance
of matching users and items for personalized recommendations
rather than relying on item related bias.

• The unpopular item group has relatively small improvement.
This improvement is mainly due to the fact that we recommend
more unpopular items to users as shown in Figure 8. Since these
items rarely appear in the training set, it is difficult to obtain a
comprehensive representation of these items, so it is difficult to
gain a large improvement in our method.
To investigate why our framework benefits the debias in the

recommendation, we explore what user branch and item branch,
i.e., 𝑦𝑢 and 𝑦𝑖 , actually learn in the model. We compare 𝜎 (𝑦𝑢) and
𝜎 (𝑦𝑖) as formulated in Eq. (7) , which is the output for the specific
user𝑢 or item 𝑖 from the user/itemmodel after the sigmoid function,
capturing user conformity and item popularity in the dataset. In
Figure 10, the background histograms indicate the proportion of
users in each group involved in the dataset. The horizontal axis
means the user groups with a certain number of interactions. The
left vertical axis is the value of the background histograms, which

corresponds to the users’ proportion in the dataset. The right verti-
cal axis is the value of the polyline, which corresponds to 𝜎 (𝑦𝑢). All
the values are the average values of the users in the groups. As we
can see, with the increase of the occurrence frequency of users in
the dataset, the sigmoid scores of them also increase. This indicates
that the user’s activity is consistent with his/her conformity level.
A similar phenomenon can be observed in Figure 11 for different
item groups. This shows our model’s capability of capturing item
popularity and users’ conformity, thus benefiting the debias.

5 RELATEDWORK
In this section, we review existing work on Popularity Bias in
Recommendation and Causal Inference in Recommendation, which
are most relevant with this work.

5.1 Popularity Bias in Recommendation
Popularity bias is a common problem in recommender systems that
popular items in the training dataset are frequently recommended.
Researchers have explored many approaches [2, 9, 10, 23, 24, 44, 51,
58] to analyzing and alleviating popularity bias in recommender
systems. The first line of research is based on Inverse Propensity
Weighting (IPW) [41] that is described in the above section. The
core idea of this approach is reweighting the interactions in the
training loss. For example, Liang et al. [30] propose to impose
lower weights for popular items. Specifically, the weight is set as
the inverse of item popularity. However, these previous methods
ignore how popularity influence each specific interaction.

Another line of research tries to solve this problem through
ranking adjustment. For instance, Abdollahpouri et al. [2] propose
a regularization-based approach that aims to improve the rank
of long-tail items. Abdollahpouri et al. [3] introduce a re-ranking
approach that can be applied to the output of the recommender
systems. These approaches result in a trade-off between the recom-
mendation accuracy and the coverage of unpopular items. They typ-
ically suffer from accuracy drop due to pushing the recommender to
the long-tail in a brute manner. Unlike the existing work, we explore
to eliminate popularity bias from a novel cause-effect perspective.
We propose to capture the popularity bias through a multi-task
training schema and remove the bias via counterfactual inference
in the prediction stage.

5.2 Causal Inference in Recommendation
Causal inference is the science of systematically analyzing the
relationship between a cause and its effect [35]. Recently, causal
inference has gradually aroused people’s attention and been ex-
ploited in a wide range of machine learning tasks, such as scene
graph generation [13, 46], visual explanations [32], vision-language
multi-modal learning [34, 37, 47, 56], node classification [15], text
classification [38], and natural language inference [16]. The main
purpose of introducing causal inference in recommender systems
is to remove the bias [4, 5, 8, 25, 42, 48, 57]. We refer the readers to
a systemic survey for more details [12].

Inverse Propensity Weighting. The first line of works is based
on the Inverse Propensity Weighting (IPW). In [30], the authors
propose a framework consisted of two models: one exposure model
and one preference model. Once the exposure model is estimated,
the preference model is fit with weighted click data, where each
click is weighted by the inverse of exposure estimated in the first

model and thus be used to alleviate popularity bias. Some very
similar models were proposed in [42, 50].

Causality-oriented data. The second line of works is working on
leveraging additional debiased data. In [7], they propose to create
an debiased training dataset as an auxiliary task to help the model
trained in the skew dataset generalize better, which can also be
used to relieve the popularity bias. They regard the large sample of
the dataset as biased feedback data and model the recommendation
as a domain adaption problem. But we argue that their method does
not explicitly remove popularity bias and does not perform well on
normal datasets. Noted that all these methods are aimed to reduce
the user exposure bias.

Causal embedding. Another series of work is based on the proba-
bility, in [31], the authors present ExpoMF, a probabilistic approach
for collaborative filtering on implicit data that directly incorporates
user exposure to items into collaborative filtering. ExpoMF jointly
models both users’ exposure to an item, and their resulting click
decisions, resulting in a model which naturally down-weights the
expected, but ultimately un-clicked items. The exposure is modeled
as a latent variable and the model infers its value from data. The
popularity of items can be added as an exposure covariate and thus
be used to alleviate popularity bias. This kind of works is based
on probability and thus cannot be generalized to more prevalent
settings. Moreover, they ignore how popularity influences each
specific interaction. Similar to our work, Zheng et al. [58] also tries
to mitigate popularity bias via causal approaches. The difference
is that we analyze the causal relations in a fine-grained manner,
consider the item popularity, user conformity and model their in-
fluence on recommendation. [58] also lacks a systematic view of
the mechanism of popularity bias.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented the first cause-effect view for alleviat-
ing popularity bias issue in recommender systems. We proposed
the model-agnostic framework MACR which performs multi-task
training according to the causal graph to assess the contribution of
different causes on the ranking score. The counterfactual inference
is performed to estimate the direct effect from item properties to
the ranking score, which is removed to eliminate the popularity
bias. Extensive experiments on five real-world recommendation
datasets have demonstrated the effectiveness of MACR.

This work represents one of the initial attempts to exploit causal
reasoning for recommendation and opens up new research possi-
bilities. In the future, we will extend our cause-effect look to more
applications in recommender systems and explore other designs of
the user and item module so as to better capture user conformity
and item popularity. Moreover, we would like to explore how to in-
corporate various side information [39] and how our framework can
be extended to alleviate other biases [12] in recommender systems.
In addition, we will study the simultaneous elimination of multiple
types of biases such as popularity bias and exposure bias through
counterfactual inference. Besides, we will explore the combination
of causation and other relational domain knowledge [33].

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (U19A2079, 61972372) and National Key Research and
Development Program of China (2020AAA0106000).

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In OSDI. 265–283.

[2] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2017. Controlling
popularity bias in learning-to-rank recommendation. In RecSys. 42–46.

[3] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2019. Managing
popularity bias in recommender systemswith personalized re-ranking. In FLAIRS.

[4] Aman Agarwal, Kenta Takatsu, Ivan Zaitsev, and Thorsten Joachims. 2019. A
general framework for counterfactual learning-to-rank. In SIGIR. 5–14.

[5] Alejandro Bellogín, Pablo Castells, and Iván Cantador. 2017. Statistical biases
in Information Retrieval metrics for recommender systems. Inf. Retr. J. (2017),
606–634.

[6] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2018. Graph convolu-
tional matrix completion. KDD Deep Learning Day (2018).

[7] Stephen Bonner and Flavian Vasile. 2018. Causal embeddings for recommendation.
In RecSys. 104–112.

[8] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max
Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. 2013.
Counterfactual reasoning and learning systems: The example of computational
advertising. JMLR (2013), 3207–3260.

[9] Rocío Cañamares and Pablo Castells. 2017. A probabilistic reformulation of
memory-based collaborative filtering: Implications on popularity biases. In SIGIR.
215–224.

[10] Rocío Cañamares and Pablo Castells. 2018. Should I follow the crowd? A proba-
bilistic analysis of the effectiveness of popularity in recommender systems. In
SIGIR. 415–424.

[11] Allison J. B. Chaney, Brandon M. Stewart, and Barbara E. Engelhardt. 2018. How
Algorithmic Confounding in Recommendation Systems Increases Homogeneity
and Decreases Utility. In RecSys. 224–232.

[12] Jiawei Chen, Hande Dong, XiangWang, Fuli Feng, MengWang, and Xiangnan He.
2020. Bias and Debias in Recommender System: A Survey and Future Directions.
arXiv preprint arXiv:2010.03240 (2020).

[13] Long Chen, Hanwang Zhang, Jun Xiao, Xiangnan He, Shiliang Pu, and Shih-
Fu Chang. 2019. Counterfactual critic multi-agent training for scene graph
generation. In ICCV. 4613–4623.

[14] Gabriel de Souza Pereira Moreira, Felipe Ferreira, and Adilson Marques da Cunha.
2018. News session-based recommendations using deep neural networks. In
Workshop on Deep Learning at RecSys. 15–23.

[15] Fuli Feng, Weiran Huang, Xiangnan He, Xin Xin, QifanWang, and Tat-Seng Chua
Chua. 2021. Should Graph Convolution Trust Neighbors? A Simple Causal
Inference Method. In SIGIR.

[16] Fuli Feng, Jizhi Zhang, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. 2021.
Empowering Language Understanding with Counterfactual Reasoning. In ACL-
IJCNLP Findings.

[17] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS. 249–256.

[18] Jon Atle Gulla, Lemei Zhang, Peng Liu, Özlem Özgöbek, and Xiaomeng Su. 2017.
The Adressa dataset for news recommendation. In WI. 1042–1048.

[19] Guibing Guo, Jie Zhang, and Neil Yorke-Smith. 2015. Trustsvd: Collaborative
filtering with both the explicit and implicit influence of user trust and of item
ratings.. In AAAI. 123–125.

[20] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. In SIGIR. 639–648.

[21] Xiangnan He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhui Tang, and Tat-Seng
Chua. 2018. Outer product-based neural collaborative filtering. In IJCAI. 2227–
2233.

[22] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[23] Amir Jadidinejad, Craig Macdonald, and Iadh Ounis. 2019. How Sensitive is Rec-
ommendation Systems’ Offline Evaluation to Popularity?. In REVEAL Workshop
at RecSys.

[24] Dietmar Jannach, Lukas Lerche, Iman Kamehkhosh, and Michael Jugovac. 2015.
What recommenders recommend: an analysis of recommendation biases and
possible countermeasures. User Model User-adapt Interact (2015), 427–491.

[25] Ray Jiang, Silvia Chiappa, Tor Lattimore, András György, and Pushmeet Kohli.
2019. Degenerate feedback loops in recommender systems. In AIES. 383–390.

[26] Santosh Kabbur, Xia Ning, and George Karypis. 2013. Fism: factored item simi-
larity models for top-n recommender systems. In KDD. 659–667.

[27] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. In ICLR.

[28] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer (2009), 30–37.

[29] Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun Wu, Richang Hong, Min-
Yen Kan, and Tat-Seng Chua. 2020. Estimation-action-reflection: Towards deep

interaction between conversational and recommender systems. In WSDM. 304–
312.

[30] Dawen Liang, Laurent Charlin, and David M Blei. 2016. Causal inference for
recommendation. In Workshop at UAI.

[31] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Mod-
eling user exposure in recommendation. In WWW. 951–961.

[32] Álvaro Parafita Martínez and Jordi Vitrià Marca. 2019. Explaining Visual Models
by Causal Attribution. In ICCV Workshop. 4167–4175.

[33] Liqiang Nie, Yongqi Li, Fuli Feng, Xuemeng Song, Meng Wang, and Yinglong
Wang. 2020. Large-scale question tagging via joint question-topic embedding
learning. ACM TOIS 38, 2 (2020), 1–23.

[34] Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xian-Sheng Hua, and Ji-
Rong Wen. 2021. Counterfactual VQA: A Cause-Effect Look at Language Bias. In
CVPR.

[35] Judea Pearl. 2009. Causality. Cambridge Uiversity Press.
[36] Matjaž Perc. 2014. The Matthew effect in empirical data. J R Soc Interface (2014),

20140378.
[37] Jiaxin Qi, Yulei Niu, Jianqiang Huang, and Hanwang Zhang. 2020. Two causal

principles for improving visual dialog. In CVPR. 10860–10869.
[38] Chen Qian, Fuli Feng, Lijie Wen, Chunping Ma, and Pengjun Xie. 2021. Counter-

factual Inference for Text Classification Debiasing. In ACL-IJCNLP.
[39] Steffen Rendle. 2010. Factorization machines. In ICDM. 995–1000.
[40] Steffen Rendle, Li Zhang, and Yehuda Koren. 2019. On the difficulty of evaluating

baselines: A study on recommender systems. arXiv preprint arXiv:1905.01395
(2019).

[41] Paul R Rosenbaum and Donald B Rubin. 1983. The central role of the propensity
score in observational studies for causal effects. Biometrika (1983), 41–55.

[42] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and
Thorsten Joachims. 2016. Recommendations as treatments: Debiasing learning
and evaluation. In ICML. 1670–1679.

[43] Xuehua Shen, Bin Tan, and ChengXiang Zhai. 2005. Implicit user modeling for
personalized search. In CIKM. 824–831.

[44] Wenlong Sun, Sami Khenissi, Olfa Nasraoui, and Patrick Shafto. 2019. Debiasing
the human-recommender system feedback loop in collaborative filtering. In
Companion of WWW. 645–651.

[45] Yueming Sun and Yi Zhang. 2018. Conversational recommender system. In SIGIR.
235–244.

[46] Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and Hanwang Zhang. 2020.
Unbiased scene graph generation from biased training. In CVPR. 3716–3725.

[47] Tan Wang, Jianqiang Huang, Hanwang Zhang, and Qianru Sun. 2020. Visual
commonsense r-cnn. In CVPR. 10760–10770.

[48] WenjieWang, Fuli Feng, XiangnanHe, Hanwang Zhang, and Tat-Seng Chua. 2021.
" Click" Is Not Equal to" Like": Counterfactual Recommendation for Mitigating
Clickbait Issue. In SIGIR.

[49] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR. 165–174.

[50] Yixin Wang, Dawen Liang, Laurent Charlin, and David M Blei. 2018. The decon-
founded recommender: A causal inference approach to recommendation. arXiv
preprint arXiv:1808.06581 (2018).

[51] Tianxin Wei, Ziwei Wu, Ruirui Li, Ziniu Hu, Fuli Feng, Xiangnan He, Yizhou Sun,
and Wei Wang. 2020. Fast Adaptation for Cold-Start Collaborative Filtering with
Meta-Learning. In ICDM. 661–670.

[52] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019.
A neural influence diffusion model for social recommendation. In SIGIR. 235–244.

[53] Jun Xu, Xiangnan He, and Hang Li. 2020. Deep Learning for Matching in Search
and Recommendation. Found. Trends Inf. Ret. 14 (2020), 102–288.

[54] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen.
2017. Deep Matrix Factorization Models for Recommender Systems. In IJCAI.
3203–3209.

[55] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In KDD. 974–983.

[56] Shengyu Zhang, Tan Jiang, Tan Wang, Kun Kuang, Zhou Zhao, Jianke Zhu,
Jin Yu, Hongxia Yang, and Fei Wu. 2020. DeVLBert: Learning Deconfounded
Visio-Linguistic Representations. In ACMMM. 4373–4382.

[57] Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui
Ling, and Yongdong Zhang. 2021. Causal Intervention for Leveraging Popularity
Bias in Recommendation. In SIGIR.

[58] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Depeng Jin, and Yong Li. 2021.
Disentangling User Interest and Conformity for Recommendation with Causal
Embedding. In WWW.

[59] Yin Zheng, Bangsheng Tang, Wenkui Ding, and Hanning Zhou. 2016. A Neural
Autoregressive Approach to Collaborative Filtering. In ICML. 764–773.

[60] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In KDD. 1059–1068.

(a) HR@K (b) NDCG@K (c) Recall@K

Figure 12: Top-K recommendation performance on Adressa datasets w.r.t. HR@K, NDCG@K and Recall@K.

A INFERENCE PROCEDURE
Algorithm 1 describes the procedure of our method and traditional
recommendation system.

Algorithm 1 Inference
Input: Backbone recommender 𝑌𝑘 , Item module 𝑌𝑖 , User module
𝑌𝑢 , User 𝑢, Item 𝑖 , Reference status 𝑐 .
Output: 𝑦𝑢𝑖
1: /* Model Agnostic Counterfactual Reasoning */
2: 𝑦𝑘 = 𝑌𝑘 (𝐾 (𝑢, 𝑖));
3: 𝑦𝑖 = 𝑌𝑖 (𝑖);
4: 𝑦𝑢 = 𝑌𝑖 (𝑢);
5: if 𝐼𝑠_𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 then
6: 𝑦𝑢𝑖 = 𝑦𝑘 ∗ 𝜎 (𝑦𝑖) ∗ 𝜎 (𝑦𝑢);
7: else
8: 𝑦𝑢𝑖 = 𝑦𝑘 ∗ 𝜎 (𝑦𝑖) ∗ 𝜎 (𝑦𝑢) − 𝑐 ∗ 𝜎 (𝑦𝑖) ∗ 𝜎 (𝑦𝑢);
9: end if
10: /* Traditional Recommender */
11: 𝑦𝑢𝑖 = 𝑌𝑘 (𝐾 (𝑢, 𝑖));

B IMPLEMENTATION DETAILS
We implement MACR in Tensorflow [1]. The embedding size is
fixed to 64 for all models and the embedding parameters are ini-
tialized with the Xavier method [17]. We optimize all models with
Adam [27] except for ExpoMF which is trained in a probabilistic
manner as per the original paper [31]. For all methods, we use the
default learning rate of 0.001 and default mini-batch size of 1024 (on
ML10M and Globo, we increase the mini-batch size to 8192 to speed
up training). Also, we choose binarized cross-entropy loss for all
models for a fair comparison. For the LightGCN model, we utilize
two layers of graph convolution network to obtain the best results.
For the Reg model, the coefficient for the item-based regularization
is set to 1e-4 because it works best. For DICE, we keep all the opti-
mal setting in their paper except replacing the regularization term
𝐿𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 from 𝑑𝐶𝑜𝑟 with another option - 𝐿2. Because with our
large-scale dataset, computing 𝑑𝐶𝑜𝑟 will be out of memory for the
2080Ti GPU. It is also suggested in their paper. For ExpoMF, the
initial value of 𝜇 is tuned in the range of {0.1, 0.05, 0.01, 0.005, 0.001}
as suggested by the author. For CausE, as their model training needs
one biased dataset and another debiased dataset, we split 10% of
the train data as we mentioned in Section 4.1 to build an additional
debiased dataset for it. For our MACR_MF and MACR_LightGCN,
the trade-off parameters 𝛼 and 𝛽 in Eq. (8) are both searched in the
range of {1𝑒 − 5, 1𝑒 − 4, 1𝑒 − 3, 1𝑒 − 2} and set to 1e-3 by default.
The 𝑐 in Eq. (9) is tuned in the range of {20, 22, ..., 40}. The number

Table 4: Effect of 𝛼 on MACR_MF.

HR@20 Recall@20 NDCG@20
1e-5 0.133 0.104 0.045
1e-4 0.139 0.108 0.049
1e-3 0.140 0.109 0.050
1e-2 0.137 0.108 0.048

Table 5: Effect of 𝛽 on MACR_MF.

HR@20 Recall@20 NDCG@20
1e-5 0.139 0.108 0.049
1e-4 0.139 0.109 0.049
1e-3 0.140 0.109 0.050
1e-2 0.139 0.108 0.049

of training epochs is fixed to 1000. The L2 regularization coefficient
is set to 1e-5 by default.

C SUPPLEMENTARY EXPERIMENTS
C.1 Metrics with different Ks
Figure 12 reports our experimental results on Adressa dataset w.r.t.
HR@K, NDCG@K and Recall@K where 𝐾 = {1, 5, 10, 15, 20}. It
shows the effectiveness of MACR which can improve MF and Light-
GCN on different metrics with a large margin. Due to space limi-
tation, we show the results on the Adressa dataset only, and the
results on the other four datasets show the same trend.

C.2 Effect of hyper-parameters
As formulated in the loss function Eq. (8), 𝛼 is the trade-off hyper-
parameter which balances the contribution of the recommendation
model loss and the item model loss while 𝛽 is to balance the recom-
mendation model loss and the user loss. To investigate the benefit
of item loss and user loss, we conduct experiments of MACR_MF
on the typical Adressa dataset with varying 𝛼 and 𝛽 respectively.
In particular, we search their values in the range of {1e-5, 1e-4, 1e-3,
1e-2}. When varying one parameter, the other is set as constant
1e-3. From Table 4 and Table 5 we have the following findings:
• As 𝛼 increases from 1e-5 to 1e-3, the performance of MACR will
become better. This result indicates the importance of capturing
item popularity bias. A similar trend can be observed by varying
𝛽 from 1e-5 to 1e-3 and it demonstrates the benefit of capturing
users’ conformity.

• However, when 𝛼 or 𝛽 surpasses a threshold (1e-3), the perfor-
mance becomes worse with a further increase of the parameters.
As parameters become further larger, the training of the recom-
mendation model will be less important, which brings the worse
results.

	Abstract
	1 Introduction
	2 problem definition
	3 methodology
	3.1 Preliminaries
	3.2 Causal Look at Recommendation
	3.3 Model-Agnostic Counterfactual Reasoning
	3.4 Rationality of the Debiased Inference
	3.5 Discussion

	4 experiments
	4.1 Experiment Settings
	4.2 Results (RQ1)
	4.3 Case Study

	5 related work
	5.1 Popularity Bias in Recommendation
	5.2 Causal Inference in Recommendation

	6 conclusion and future work
	Acknowledgments
	References
	A Inference Procedure
	B Implementation details
	C Supplementary experiments
	C.1 Metrics with different Ks
	C.2 Effect of hyper-parameters

