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a b s t r a c t 

Existing studies on influence maximization (IM) mainly focus on activating a set of influential users (seed 

nodes). Originated from the seed nodes’ promotion actions (e.g., posting an advertising tweet) on social 

networks, a large influence spread might be triggered. However, in practice it is usually very expensive to 

have influential users posting original tweets in a promotional event. In contrast, it will incur much lower 

costs to have influential users reposting tweets and have ordinary users posting original tweets. Inspired 

by these observations, in this paper, we consider the Holistic Budgeted Influence Maximization (HBIM) 

problem, which maximizes the influence spread by deploying the budget to select seed nodes (for post- 

ing) and boost nodes (for reposting). To tackle the NP-hardness and non-submodularity of the problem, 

we devise two efficient algorithms with the data-dependent approximation ratios. Extensive experiments 

on real social networks demonstrate the efficiency and effectiveness of our proposed algorithms. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Social media marketing is drawing increasing attentions for in-

dustrial and research communities [1,2] . By selecting a group of in-

fluential users (seed nodes) to post specific tweets such as online

comments, product reviews, etc., a large chain of product adoption

might be triggered [3,4] . To make effective marketing strategies in

social media, Influence Maximization has become a hot research

topic [5,6] . Existing works mainly focus on selecting the optimal

seed nodes to maximize the influence spread, with an underlying

assumption that costs for involving different users are equal. In

fact, this assumption seldom holds and it is usually more expen-

sive to involve influential users in a promotion event than ordi-

nary users. This difference in costs motivated the research on Bud-

geted Influence Maximization problem [7] . However, a random cost

is used for each node in [7] , disregarding the fact that selecting in-

fluential users as seed nodes will usually incur expensive cost in

social media marketing. 

More recently, Lin et al. [8] propose the influence boost model

in which a set of nodes are “boosted” so that they are more sus-

ceptible to their friends’ influence. By selecting appropriate boost

nodes, the influence spread of a given set of initial seed nodes will
∗ Corresponding author. 
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e increased. In practice, such pattern does exist, e.g., reposting by

nfluential users may boost the spread of a specific tweet. 

However, the work of [8] only consider selecting boost nodes

o increase the influence spread for a given set of seed nodes, with

he equal cost assumption. Actually, the influence boost model can

rovide a more flexible mechanism for budget allocation with dif-

erent cost, providing the fact that persuading a user for reposting

 tweet usually incurs much lower cost than for posting an origi-

al one. Consequently, a better budget allocation can be achieved

or influence maximization by involving both seed nodes and boost

odes in selection. 

In this paper, we propose a new framework for influence max-

mization, named as Holistic Budgeted Influence Maximization

HBIM), to explicitly involve both seed and boost nodes in se-

ection. Given the cost of seed/boost nodes, HBIM maximizes the

xpected influence spread in a social network with the optimal

eployment of seed nodes (to post) and boost nodes (to repost)

nder the budget constraint. By involving both seed nodes and

oost nodes in influence spread, HBIM offers more flexibility in

udget-based influence maximization. As this is the case for most

ommercial promotions in social media, we expect our work to

ave good applicability in real world scenarios. 

Nevertheless, the HBIM is NP-hard and computing the expected

nfluence spread for a given budget deployment is #P-hard. Mean-

hile, the influence spread in HBIM problem is not submodular,

eaning that the greedy algorithm cannot ensure any performance

uarantees. To address these problems, we develop two efficient

lgorithms IMD and IMD-LB for HBIM with data-dependent
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Table 1 

Meanings of frequent used symbols. 

Symbols Meanings 

n Number of nodes in the network 

m Number of edges in the network 

k Total budget 

S Seed node set 

B Boost node set 

c s ( u ) Cost of selecting node u as seed node 

c b ( u ) Cost of selecting node u as boost node 

〈 S, B 〉 A deployment with seed set S and boost set B 

σ ( 〈 S, B 〉 ) The expected influence spread of deployment 〈 S, B 〉 
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pproximation ratios. Extensive experiments are conducted using

eal social networks. The experimental results show the efficiency

nd effectiveness of our proposed algorithms, and demonstrate the

uperiority of proposed algorithms over compared algorithms. It is

orthwhile to summarize our major contributions as follows. 

1. We propose a new framework of Holistic Budgeted Influence

Maximization (HBIM), which explicitly involves both seed and

boost nodes selection. This framework may offers more flexibil-

ity in real world scenarios. 

2. We prove the HBIM is NP-hard and computing the expected

influence spread for a given budget deployment is #P-hard.

Meanwhile, the influence spread in HBIM problem is not sub-

modular, meaning that the greedy algorithm cannot ensure any

performance guarantees. 

3. We develop two efficient algorithms IMD and IMD-LB for HBIM

with provable data-dependent approximation ratios. 

4. We conduct extensive experiments and the experimental re-

sults show the efficiency and effectiveness of our proposed al-

gorithms, and demonstrate the superiority of proposed algo-

rithms over compared algorithms. 

The rest of this paper is organized as follows. In Section 2 , we

iscuss the related works of this paper. After that, we formally de-

ne the HBIM problem and discuss its properties in Section 3 . In

ection 4 , we develop two efficient algorithms for solving HBIM

ith data-dependent approximation ratios. Extensive experiments

sing real social networks are shown in Section 5 . Conclusions are

resented in Section 6 . For conveniens, we list the most frequently

sed symbols in Table 1 . 

. Related works 

Domingos and Richardson [9,10] are the first to study influence

aximization problem in social networks and they formulate the

roblem with a probabilistic framework. Kempe et al. [5] further

ormulate the problem as a discrete optimization problem, which

s widely adopted by subsequent studies. They prove the problem

s NP-hard and propose a greedy algorithm to approximately solve

t by repeatedly selecting the node that brings the largest marginal

nfluence increase. Following their work, a series of subsequent

tudies attempt to improve the empirical efficiency [11–15] . How-

ver, these works still suffer O( knmr ) computation time and cannot

cale to large networks. 

Recently, Borg et al. [16] make a theoretical breakthrough

nd present a near-linear time algorithm under the inde-

endent cascade (IC) model. With time complexity to be

 ( k � 2 ( m + n ) log 
2 
n/ ε 3 ) , their algorithm returns a (1 − 1 /e − ε) -

pproximate solution with at least (1 − 1 / n � ) probability. Based

n the Reverse Reachable Sets (RR-sets) proposed in [16] , re-

ent subsequent works [17–20] further reduce the time complex-

ty while retaining the same provable approximate ratio. Meth-

ds of TIM [17] and IMM [18] both decrease time complexity to

 ( ( k + � )( m + n ) log 
2 
n/ ε 2 ) while the latter one further reduce the
nnecessary computational costs. Following these works, the study

f [19] proposes a more tight sampling method which can achieve

 sampling size with a constant factor to the optimal value. More

ecently, using a sampling method based on Bottom-K sketch, the

ork in [20] further speed up the practical running time with a

rovable approximate guarantee of 1 − 1 /e − ε − ε ′ . 
Meanwhile, boosting influence spread of a given seed set also

ttracted research attentions. Some existing works increase in-

uence spread by recommending connections in social networks

21–23] . More recently, the k -boosting problem is proposed in

8] by extending the IC model to the influence boosting model.

iven a fixed seed set, it aims to find k boost nodes for increasing

he influence spread. However, these works only consider selecting

oost nodes or adding edges to increase the influence spread for

 given set of seed nodes. Actually, we can explicitly involve both

eed and boost nodes in selection, which may offer more flexibility

n influence maximization. 

Another line of research in IM is budgeted influence maxi-

ization [7,24] , in which each seed node is assigned a cost and

nfluence is maximized under certain budget constraint. Existing

orks vary in how the costs are derived. Singer [25] propose a

echanism to elicit the rational agents’ true cost while a random

ost is used in [7,24] . In practice, selecting influential users as

eeds usually incur expensive cost. Actually, we can design a

ore flexible mechanism for budget allocation with different cost,

roviding the fact that persuading a user for reposting a tweet

sually incurs much lower cost than for posting an original one.

onsequently, a better budget allocation can be achieved for influ-

nce maximization by involving both seed nodes and boost nodes

n selection. As this is the case for most commercial promotions

n social media, we expect our work to have good applicability in

eal world scenarios. 

Other extensions of influence maximization includes location-

ware influence maximization [26,27] , opinion-aware (positive

r negative) influence maximization [28,29] and so on. Other

iffusion-aware and topic model based social network researches

re also actively explored [30–32] . Some recent works heuristi-

ally select influential nodes by utilizing label propagation meth-

ds [33] or considering the eigenvector centrality [34] . 

. Problem definition 

To present our problem definition, we will start with introduc-

ng the independent cascade (IC) model [5] and its extension of

nfluence boosting model. 

In the IC model, given a graph G = ( V, E ) , each edge e uv ∈ E is

ssociated with a probability p uv and each node u ∈ V is initially

nactive. During the diffusion process, a newly activated node only

as one trial to activate its inactive neighboring nodes with proba-

ility p uv . The Influence Maximization problem is to find a set S ⊂ V

f k seed nodes such that the expected influence spread σ ( S ), i.e.,

he expected number of active nodes at the final state, is maxi-

ized as each seed in S is activated at the beginning. 

efinition 1 (Influence Boosting Model [8] ) . Given a graph G =
( V, E ) , each edge e uv ∈ E is associated with a probability p uv and a

oost probability p ′ u v with p ′ u v > p u v . During the influence diffusion

rocess, if v is (is not) a boost node, each of its newly-activated in-

eighbor u influences v with probability p ′ u v ( p uv ). 

Given Definition 1 , we define a deployment as a binary tu-

le which consists of two sets of nodes, i.e., 〈 S, B 〉 , where

 and B are the seed node set and boost node set respec-

ively. We associate each node u with two costs c s ( u ) and c b ( u )

epresenting the costs for seed and boost nodes respectively.

iven a deployment 〈 S, B 〉 , we denote C s (S) = 

∑ 

u ∈ S c s (u ) and

 b (B ) = 

∑ 

u ∈ B c b (u ) as the total cost of set S and B respectively.
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Fig. 1. Toy example of HBIM. 
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We denote σ ( 〈 S, B 〉 ) as the expected influence spread, i.e., the ex-

pected number of final active nodes following deployment 〈 S, B 〉 .
Note we assume that c s ( · ) and c b ( · ) are both positive and smaller

than budget k . The Holistic Budgeted Influence Maximization prob-

lem is then formally stated as follows. 

Definition 2 (HBIM) . Given a social network G = ( V, E ) and a bud-

get k , the HBIM problem is to find a deployment 〈 S, B 〉 ∗ which

maximize σ ( 〈 S, B 〉 ): 
〈 S, B 〉 ∗ = arg max 〈 S,B 〉 σ (〈 S, B 〉 ) 

s.t. C s (S) + C b (B ) ≤ k. 

We can reasonably assume that c b ( · ) is much smaller than c s ( · )

for each node. Otherwise, if we set c b ( u ) ≥ c s ( u ), then selecting u as

a seed node takes smaller cost but brings larger increase on σ ( · )

than being selected as a boost node. Meanwhile, by further setting

c s (u ) = 1 for each node u , we have the following result. 

Theorem 1. The HBIM problem is NP-hard, and given a deployment

〈 S, B 〉 , computing σ ( 〈 S, B 〉 ) is #P-hard. 

Proof. If we set c b ( u ) ≥ c s ( u ) and c s (u ) = 1 for each node u , the

HBIM problem is reduced to the traditional IM problem and

σ ( 〈 S, B 〉 ) is exactly equal to σ ( S ), since no boost node will be se-

lected. It is known that the IM problem is NP-hard [5] and com-

puting σ ( S ) is #P-hard [12] . Therefore, the theorem is proved. �

To better illustrate HBIM problem, in Fig. 1 we construct a sim-

ple example. In Fig. 1 , the propagation probabilities are labeled

above the edges and the boost propagation probabilities are la-

beled below the edges (marked in red). The costs of seed and boost

nodes are listed in the table. Following traditional IM problem and

selecting one node to be seed, then node c is selected since the

expected influence spread of node a, b, c are 1.28, 1.4, 2, respec-

tively. However, under the HBIM setting, a better result exists. By

selecting node a as seed node and b, c as boost nodes, the expected

influence spread will be 2 (same as selecting c as seed), while the

cost is 1.8 (less than selecting c as seed). 

Non-submodular. It is easy to see that for any fixed B, σ ( 〈 S, B 〉 )
is monotone and submodular with S (It equals to traditional in-

fluence maximization process [5] ). However, for any fixed S, σ ( 〈 S,

B 〉 ) is monotone but not submodular for B . See Fig. 1 as a counter-

example. Let S = { a } and B 1 = ∅ , B 2 = { c} . Then σ (〈 S, B 1 ∪ { b}〉 ) −
σ (〈 S, B 1 〉 ) = 0 . 42 < 0 . 6 = σ (〈 S, B 2 ∪ { b}〉 ) − σ (〈 S, B 2 〉 ) which vio-

lates submodularity. 

4. Proposed algorithms 

Given Theorem 1 and the non-submodularity of the problem,

the classical greedy algorithm cannot achieve 1 − 1 /e approxima-

tion. To tackle these problems, in this section, we propose two

algorithms for solving HBIM problem with data-dependent ap-

proximation by utilizing the Potentially Reverse Reachable graphs

(PRR-graph). 

4.1. Potentially reverse reachable graphs 

Given a network G = (V, E) , the generation process of a random

PRR-graph [8] is presented as follows. 
1. Denote each edge e uv in E as “live” with probability of p uv , “live-

upon-boost” with probability of p ′ u v − p u v , and “blocked” with

probability of 1 − p ′ u v . 
2. Denote the residual graph as g with all blocked edges removed,

and sample a random root node r from V . 

3. Take the subgraph of g which contains all paths that can reach

r as a random PRR-graph. 

Let R be a random PRR-graph with root r . Then we say r is

eachable from a node u if there is a path in R containing only live

dges which starts at u and ends at r . Similarly, given a boost node

et B , we say r is reachable − upon − boosting B from a node u if

here is a path in R which starts at u and ends at r with every edge

 uv on it either live or li v e − upon − boost with v ∈ B . Now we de-

ne the concept of cover . 

efinition 3 (Cover) . Given a deployment 〈 S, B 〉 , we say a ran-

om PRR-graph for root node r is covered by 〈 S, B 〉 if r is either

eachable from a node in S or reachable − upon − boosting B from

 node in S . 

Given R as a set of random PRR-graphs and Cov R 

(〈 S , B 〉 ) as

he set of PRR-graphs in R that covered by 〈 S, B 〉 , we define

f R 

(〈 S, B 〉 ) = 

n 
|R| · | Cov R 

(〈 S , B 〉 ) | where n = | V | . Based on Chernoff

ound, f R 

(〈 S, B 〉 ) can closely estimate σ ( 〈 S, B 〉 ) for any 〈 S, B 〉 if

R| is sufficiently large. Therefore, an intuitive approach for solv-

ng the HBIM problem is to greedily select seed/boost nodes that

arginally maximize f R 

(·) . However, since the greedy algorithm

as no approximation guarantee as discussed above, we turn to

ptimize a submodular lower bound of the influence spread and

tilize the Sandwich Approximation (SA) strategy [19] to approach

he optimal solution. 

.2. IMD algorithm 

Before detailed into the proposed algorithm, we first present

he lower bound function L ( 〈 S, B 〉 ) of σ ( 〈 S, B 〉 ). 
Lower bound function. Given a PRR-graph set R and a de-

loyment 〈 S, B 〉 , we define the lower bound function L (〈 S, B 〉 ) =
 [ f −R 

(〈 S, B 〉 )] , where 

f −R 

(〈 S, B 〉 ) = 

n 

|R| · | ∪ v ∈ B Cov R 

(〈 S , { v }〉 ) | . 

emma 1. L ( 〈 S, B 〉 ) ≤σ ( 〈 S, B 〉 ) holds for any 〈 S, B 〉 . 
roof. By definition, we have ∪ v ∈ B Cov R 

(S , v) ⊆ Cov R 

(〈 S , B 〉 ) which

eads f −R 

(〈 S, B 〉 ) ≤ f R 

(〈 S, B 〉 ) hold for any 〈 S, B 〉 . Meanwhile,

y definition we have σ (〈 S, B 〉 ) = E [ f R 

(〈 S, B 〉 )] and L (〈 S, B 〉 ) =
 [ f −R 

(〈 S, B 〉 )] . Thus we have L ( 〈 S, B 〉 ) ≤σ ( 〈 S, B 〉 ) which proves the

emma. �

Given the lower bound function, we present our algorithm In-

uence Maximization via Deployment (IMD) in Algorithm 1 . It

ontains three building blocks, DynamicSampling (Line 1), Deploy-

electionLB (Line 2) and DeploySelection (Line 3). The Dynamic-

ampling algorithm derives from the D-SSA algorithm [19] which

eturns a set R of sufficient number of PRR-graphs. Then we greed-

ly select two solutions which marginally maximize f − and f R 

by
R 



Q. Shi, C. Wang and J. Chen et al. / Neurocomputing 338 (2019) 92–100 95 

Algorithm 1: IMD ( G, k , ε). 

1 R = DynamicSampling (G, k, ε) ; 

2 〈 S, B 〉 L = DeploySelectionLB (G, k, R ) ; 

3 〈 S, B 〉 σ = DeploySelection (G, k, R ) ; 

4 〈 S, B 〉 ∗ = arg max 〈 S,B 〉∈{〈 S,B 〉 L , 〈 S,B 〉 σ } f R 

(〈 S, B 〉 ) ; 
5 return 〈 S, B 〉 ∗
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eploySelectionLB and DeploySelection respectively. The final so-

ution is selected between the above two greedy solutions with

arger value of f R 

. In the following, we will explain the key steps

f the three blocks, and the approximation guarantees and com-

lexity analysis are left in Section 4.3 . 

.2.1. DynamicSampling ( Algorithm 2 ) 

First, Algorithm 2 generates a set R with size � and in-

oke DeploySelectionLB function to obtain a current solution

Algorithm 2: DynamicSampling( G, k , ε). 

1 � ← (1 + 1 /ε) 2 (2 + 2 ε/ 3) ln 2 n ; 

2 R ← Generate � random PRR-graphs; 

3 〈〈 S, B 〉 L , f 1 〉 = DeploySelectionLB (G, k, R ) ; 

4 while |R| < (2 + 2 ε/ 3) · ln (2 n �) · nε −2 /k do 

5 R 

′ ← Generate |R| random PRR-graphs; 

6 f 2 ← Cov R 

′ (〈 S , B 〉 L ) ; ε 1 ← f 1 / f 2 − 1 ; R ← R ∪ R 

′ ; 
7 if ε 1 ≤ ε then 

8 ε 2 ← 

ε−ε 1 
2(1+ ε 1 ) , ε 3 ← 

ε−ε 1 
2(1 −1 / 

√ 

e ) 
; 

9 δ1 ← exp (− f 1 ε 
2 
3 

(2+2 ε 3 / 3)(1+ ε 1 )(1+ ε 2 ) ) ; 

10 δ2 ← exp (− ( f 2 −1) ε 2 
2 

(2+2 ε 2 / 3)(1+ ε 2 ) + ln (2 log 2 n )) ; 

11 if δ1 + δ2 ≤ 1 /n then 

12 break; 

13 〈〈 S, B 〉 L , f 1 〉 = DeploySelectionLB (G, k, R ) ; 

14 return R 

Line 1–3). Then with the size of R not exceeding a threshold (Line

), the algorithm generate another set R 

′ of |R| PRR-graphs to

heck the quality of current solution. If the stopping condition is

atisfied (Line 11), it returns the PRR-graph set R . 

.2.2. DeploySelectionLB ( Algorithm 3 ) 

Feeded with set R , the DeploySelectionLB algorithm returns a

eployment 〈 S, B 〉 L which approximately maximizes L ( · ). To ex-

lain, we define �−
S 
(v ) /c s (v ) and �−

B 
(v ) /c b (v ) as gain-cost ratio

here 

�−
S 
(v ) = f −R 

(〈 S ∪ { v } , B 〉 ) − f −R 

(〈 S, B 〉 ) , 
�−

B 
(v ) = f −R 

(〈 S, B ∪ { v }〉 ) − f −R 

(〈 S, B 〉 ) . 
s we can see, the return of DeploySelectionLB algorithm comes

rom two candidate deployments. 〈 S 1 , B 1 〉 (obtained by the first

hile loop) is a deployment that contains one seed node with the

argest �−
S 
(·) and several boost nodes which are greedily selected

y the gain-cost ratio. Meanwhile, 〈 S 2 , B 2 〉 (obtained by the sec-

nd while loop) contains seed nodes and boost nodes which are

elected by the gain-cost ratio. It can be proved that the final so-

ution return by DeploySelectionLB ensures a 1 − 1 / 
√ 

e − ε approx-

mation ratio under the budget constraint (See Section 4.3 ). 

.2.3. DeploySelection 

After returning the deployment 〈 S, B 〉 L which approximately

aximizes L ( · ), the DeploySelection algorithm greedily selects a
olution 〈 S, B 〉 σ for maximizing f R 

(·) . It can be implemented by

he same process of DeploySelectionLB algorithm with all �−(·)
eplaced by �( · ), which takes the same formulation of �−(·) by

eplacing f −R 

with f R 

. 

.3. Approximation and complexity 

.3.1. Approximation of DeploySelectionLB 

First, Algorithm 2 derives from Algorithm 4 in [19] with slight

ifferences on the threshold (Line 4) and the updating of param-

ters (Lines 8–10), which ensures the set R returned is sizable

nough if Algorithm 3 achieves an approximate solution 〈 S, B 〉 L . 

Algorithm 3: DeploySelectionLB (G, k, R ) . 

1 Initialize 〈 S 1 , B 1 〉 with S 1 = ∅ and B 1 = ∅ ; V s = V ; 

2 u 1 = arg max u ∈ V s ∩ c s (u ) ≤k �S (u ) ; 

3 S 1 = S 1 ∪ { u 1 } ; k = k − c s (u 1 ) ; V s = V s \ u 1 ; 
4 while V s � = ∅ do 

5 Remove the nodes v with C b (B 1 ∪ { v } ) > k from V . 

v 1 = arg max v ∈ V s �
−
B 
(v ) /c b (v ) ; 

6 B 1 = B 1 ∪ { v 1 } ; V s = V s \ v 1 ; 
7 Initialize 〈 S 2 , B 2 〉 with S 2 = ∅ and B 2 = ∅ ; V s = V ; 

8 while V s � = ∅ do 

9 v 1 = arg max v �
−
S 
(v ) /c s (v ) ; 

10 v 2 = arg max v �
−
B 
(v ) /c b (v ) ; 

11 if �−
S 
(v 1 ) /c s (v 1 ) ≥ �−

B 
(v 2 ) /c b (v 2 ) then 

12 if C s (S ∪ { v 1 } ) + C b (B ) ≤ k then 

13 S 2 = S 2 ∪ { v 1 } ; 
14 V s = V s \ v 1 ; 
15 else 

16 if C s (S) + C b (B ∪ { v 2 } ) ≤ k then 

17 B 2 = B 2 ∪ { v 2 } ; 
18 V s = V s \ v 2 ; 
19 〈 S, B 〉 = arg max 〈 S,B 〉∈{〈 S,B 〉 1 , 〈 S,B 〉 2 } Cov R 

(〈 S , B 〉 ) ; 
20 return 〈〈 S, B 〉 , Cov R 

(〈 S , B 〉 ) 〉 

emma 2 ( [19] ) . If DeploySelectionLB (Algorithm 3 ) returns a solu-

ion with (1 − 1 / 
√ 

e ) -approximate ratio for maximizing f −R 

, then the

et R returned by DynamicSampling contains no more than, to within

 constant factor, the least number of PRR-graphs, which ensures Line

 of Algorithm 1 can return a 1 − 1 / 
√ 

e − ε-approximate solution for

aximizing L with at least (1 − 1 /n ) probability. 

The pre-condition of Lemma 2 is that Algorithm 3 ensures a

 − 1 / 
√ 

e approximation ratio, as proved below. 

emma 3. Algorithm 3 returns a (1 − 1 / 
√ 

e ) approximate solution

or maximizing f −R 

(·) . 

roof. Let 〈 S, B 〉 ° be the optimal deployment that maximize f −R 

(·) .
eanwhile, we denote c i as the cost of adding the i th node into the

eployment in the while loop of GreedySelection in Algorithm 2 ,

nd 〈 S, B 〉 i be the corresponding generated deployment. 

Clearly, f −R 

(〈 S, B 〉 ◦) − f −R 

(〈 S, B 〉 i −1 ) is no more than the num-

er of PRR-graphs covered by 〈 S, B 〉 °, but not covered by 〈 S, B 〉 i −1 .

or each seed node or boost node in 〈 S, B 〉 ° but not in 〈 S, B 〉 i −1 ,

he gain-cost ratio is at most ( f −R 

(〈 S, B 〉 i ) − f −R 

(〈 S, B 〉 i −1 )) /c i , since

he greedy selection maximizes this ratio over all candidate nodes.

ince the total cost of is bounded by k , we have 
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1 http://snap.stanford.edu/data/ . 
f −R 

(〈 S, B 〉 ◦) − f −R 

(〈 S, B 〉 i −1 ) 

≤ k 

c i 
·
(

f −R 

(〈 S, B 〉 i ) − f −R 

(〈 S, B 〉 i −1 ) 
)
. 

Next we prove the following equation holds. 

f −R 

(〈 S, B 〉 i ) ≥
[ 

1 −
∏ i 

j=1 

(
1 − c j 

k 

)] 
· f −R 

(〈 S, B 〉 ◦) . 
Note for i = 1 , it obviously holds (We fix f −R 

(〈 S, B 〉 0 ) = 0 since S, B

are empty sets). By an induction which suppose the equation holds

for i − 1 with i > 2, we have 

f −R 

(〈 S, B 〉 i ) 
= f −R 

(〈 S, B 〉 i −1 ) + ( f −R 

(〈 S, B 〉 i ) − f −R 

(〈 S, B 〉 i −1 )) 

≥ f −R 

(〈 S, B 〉 i −1 ) + 

c i 
k 

· ( f −R 

(〈 S, B 〉 ◦) − f −R 

(〈 S, B 〉 i −1 ) 

= (1 − c i 
k 

) · f −R 

(〈 S, B 〉 i −1 ) + 

c i 
k 

· f −R 

(〈 S, B 〉 ◦) 
≥ (1 − c i 

k 
) ·

(
1 −

∏ i −1 

j=1 

(
1 − c j 

k 

))
· f −R 

(〈 S, B 〉 ◦) 
+ 

c i 
k 

· f −R 

(〈 S, B 〉 ◦) 
= 

(
1 −

∏ i 

j=1 

(
1 − c j 

k 

))
· f −R 

(〈 S, B 〉 ◦) . 
Based on all the results above, we new discuss three cases of

the return by Algorithm 2 . 

Case 1: There exists a node s which leads f −R 

(〈{ s } , ∅〉 ) ≥
1 
2 f 

−
R 

(〈 S, B 〉 ◦) . If such seed exists, it must be examined by the algo-

rithm as a candidate solution, i.e., 〈 S, B 〉 1 returned by SingletonSe-

lection (Line 1 in Algorithm 2 ) with a value of at least 1 
2 f 

−
R 

(〈 S, B 〉 ◦) .
Case 2: There is no seed satisfying Case 1 and the return of

GreedySelection, i.e., 〈 S, B 〉 2 in Line 2 of Algorithm 2 , satisfies

 s (S) + C b (B ) < 

1 
2 k . Then for any v not in S ∪ B , both c s ( v ) and c b ( v )

are larger than 

1 
2 k (otherwise, it could be added to 〈 S, B 〉 2 ). There-

fore, there must be only one seed node or one boost node that

in 〈 S, B 〉 ° but not in 〈 S, B 〉 2 . Suppose it is a seed node s . Since

f −R 

(〈{ s } , ∅〉 ) < 

1 
2 f 

−
R 

(〈 S, B 〉 ◦) , it follows that f −R 

(〈 S, B 〉 ◦ ∩ 〈 S, B 〉 2 ) ≥
1 
2 f 

−
R 

(〈 S, B 〉 ◦) and thus f −R 

(〈 S, B 〉 2 ) ≥ 1 
2 f 

−
R 

(〈 S, B 〉 ◦) . See if it is a

boost node s that in 〈 S, B 〉 ° but not in 〈 S, B 〉 2 , it follows that

f −R 

(〈 S ′ , { s }〉 ) ≤ f −R 

(〈{ s } , ∅〉 ) for any seed set S ′ which also confirms

the conclusion. 

Case 3: There is no seed satisfying Case 1 and 〈 S, B 〉 2 satis-

fies C s (S) + C b (B ) ≥ 1 
2 k . See for a 1 , . . . , a n ∈ R 

+ such that 
∑ n 

i =1 a i =
αA, function (1 − ∏ n 

i =1 (1 − a i 
A 
)) achieves its minimum of 1 − (1 −

α/n ) n when a 1 = · · · = a n = αA/n, for A, α > 0. Let r be the number

of nodes added into 〈 S, B 〉 2 . Then we have 

f −R 

(〈 S, B 〉 r ) ≥
[ 

1 −
∏ r 

j=1 

(
1 − c j 

k 

)] 
· f −R 

(〈 S, B 〉 ◦) 

≥
[

1 −
(

1 − 1 

2 r 

)r 
]

· f −R 

(〈 S, B 〉 ◦) 

≥
(
1 − 1 / 

√ 

e 
)

· f −R 

(〈 S, B 〉 ◦) . 
Thus, in each case, a value of the solution produced by the

Algorithm 2 is at least (1 − 1 / 
√ 

e ) · f −R 

(〈 S, B 〉 ◦) , and the lemma

follows. �

4.4. Sandwich approximation strategy and submodular lower bound 

Combining Lemma 2 and 3 , the candidate solution 〈 S, B 〉 L re-

turned in Line 2 of Algorithm 1 is a (1 − 1 / 
√ 

e − ε) -approximation

of maximizing function L . Since the non-submodularity of the

problem, we utilize the SA Strategy [23] to select the final solution

σ ( 〈 S, B 〉 ∗) between 〈 S, B 〉 L and 〈 S, B 〉 σ . It is ensured that if 〈 S, B 〉 L
is a (1 − 1 / 

√ 

e − ε) -approximate solution for maximizing L ( · ), the
olution σ ( 〈 S, B 〉 ∗) returned by Algorithm 1 satisfies: 

(〈 S, B 〉 ∗) ≥ L (〈 S, B 〉 ◦) 
σ (〈 S, B 〉 ◦) · (1 − 1 / 

√ 

e − ε) · OP T , 

here 〈 S, B 〉 ° is optimal solution and OP T = σ (〈 S, B 〉 ◦) . 
Let U ( · ) be a submodular upper bound of the influence spread

nd 〈 S u , B u 〉 be the greedy solution with (1 − 1 / 
√ 

e − ε) approx-

mate ratio. Then the upper bound version of SA strategy is 

(〈 S, B 〉 ∗) ≥ σ (〈 S u , B u 〉 ◦) 
U(〈 S u , B u 〉 ◦) · (1 − 1 / 

√ 

e − ε) · OP T . 

owever, in this work, we only use the lower-bound side since L

s significantly closer to σ · than any upper bound we have tested.

.4.1. Complexity 

By Lemma 2 , the set R returned by DynamicSampling has a

heoretically least size within a constant factor. As the worst case,

he DynamicSampling never meet the stopping condition until |R|
xceed the threshold in Line 4 of Algorithm 2 . The threshold, with

alue (2 + 

2 
3 ε) · ln (2 n �) · n 

ε 2 k 
, is derived from Tang et al. [18] with

 slightly loose factor, where � is the number of possible deploy-

ent under the budget constraint. See � is bounded by O (2 
( n 

k/c m 
) 
)

here c m 

is the minimum cost. Thus in the worst case, the size of

 is O ((2 + 2 ε/ 3) · ln (4 n ) · n k +1 ε −2 /k ) . The DeploySelectionLB al-

orithm can be implemented by the greedy algorithm for maxi-

um coverage and runs in time linear to the size of R . In the De-

loySelection algorithm, after we selecting a node, updating �S ( · )

nd �B ( · ) for each node takes time linear to the size of R . There-

ore, the time complexity of Algorithm 1 in the worst case is

 ((2 + 2 ε/ 3) · ln (4 n ) · n k +1 /ε 2 ) . Combining all the above analysis,

e have the following result. 

heorem 2. With a probability of at least 1 − 1 /n, the IMD algo-

ithm (Algorithm 1) returns a (1 − 1 / 
√ 

e − ε) · L (〈 S,B 〉 ◦) 
σ (〈 S,B 〉 ◦) -approximate

olution, of which the worst time complexity is O ((2 + 2 ε/ 3) · ln (4 n ) ·
 

k +1 /ε 2 ) . 

Though the worst time complexity is expensive when n, k are

arge, in the experiments we find the algorithm meets the stopping

ondition very fast with common settings of n, k , which demon-

trates that our algorithm is far more practical than the theoreti-

al analysis. In addition, the approximation ratio given in Theorem

 depends on the ratio of L (〈 S,B 〉 ◦) 
σ (〈 S,B 〉 ◦) , which should be close to one if

he lower bound function is close to the actual influence spread. In

he experiments we confirm such closeness on real datasets. Actu-

lly, we can simply use 〈 S, B 〉 L returned by Line 2 of Algorithm 1 as

he final solution which retains the same approximate ratio but

an reduce the running time. We name it as IMD-LB algorithm and

ompare it with IMD in the experiments. 

. Experiments 

.1. Experimental settings 

.1.1. Datasets 

We use three real social networks 1 , as listed in Table 2 . Epin-

ons is a who-trust-whom online social network of a a general con-

umer review site Epinions.com. Members of the site can decide

hether to “trust” each other. Gowalla is a location-based social

etworking website where users share their locations by checking-

n. The friendship network is undirected and was collected using

heir public API. Youtube is a video-sharing web site that includes

 social network. Note in the experiments we change each undi-

ected edge to bi-directed edge. 

http://snap.stanford.edu/data/
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Table 2 

Statistics of data sets. 

Data Sets Nodes Edges EdgeType AverageDegree 

Epinions 75K 508K directed 6.77 

Gowalla 197K 950K undirected 9.64 

Youtube 1.1M 2.9M undirected 5.36 
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Table 3 

Running time with different budgets. 

Data sets Running time (s) 

k = 5 k = 10 k = 15 k = 20 k = 25 

Ep IMD-LB 22.9 47.4 107.5 117.9 217.7 

IMD 24.0 52.1 118.1 130.2 244.0 

Reduce 4.6% 9.1% 9.0% 9.5% 10.8% 

Gw IMD-LB 170.0 337.2 354.9 761.2 1343.6 

IMD 192.0 382.2 419.0 920.7 1647.1 

Reduce 11.5% 11.8% 15.3% 17.3% 18.4% 

Yt IMD-LB 727.4 405.9 407.9 427.7 781.8 

IMD 841.0 434.9 445.4 450.5 870.3 

Reduce 13.5% 6.7% 8.4% 5.1% 10.2% 
.1.2. Comparison methods 

As far as we know, no existing algorithm is applicable to the

BIM problem. Thus, we compare our proposed algorithms with

he modified IM methods, as listed below. All compared algorithms

re under the same budget constraint. 

• IMD. This is Algorithm 1 proposed in this paper, which uses

the SA strategy and takes the better one between the exact

greedy solution and the greedy solution for maximizing the

lower bound function. 

• IMD-LB. This is an algorithm that directly takes 〈 S, B 〉 L in Line 2

of IMD as solution, which is the greedy solution for maximizing

the lower bound function. 

• IMD-Seed. This method takes only the seed node set in the re-

turned solution of IMD algorithm. 

• IMD-LB-Seed. This method takes only seed node set in the re-

turned solution of IMD-LB algorithm. 

• IM-N. This method uses the state-of-the-art IM method D-SSA

[19] to greedily select seed nodes, by decreasing order of the

marginal gain of the number of nodes. 

• IN-R. This method uses state-of-the-art IM method D-SSA

[19] to greedily select seed nodes, by decreasing order of the

marginal gain of the gain-cost ratio defined in Section 4.2.2 . 

.1.3. Parameters setting 

For the cost of seed/boost node, we set c s (v ) = α · (1 −
 

−(d v +1) ) , where d v is the out-degree of node v and α is a random

alue sampled from Beta distribution, α ∼ Be (5, 5). Meanwhile, we

et c b (v ) = c s (v ) /d a v g where d avg is the average out-degree of the

ataset. 

Following [8] , we set the boost propagation probability of edge

 uv as p ′ u v = 1 − (1 − p u v ) β ( β > 1) with p u v = 1 /din v is the propa-

ation probability, where din v is the in-degree of node v. β is the

oost parameter and we set β = 2 unless otherwise specified. In-

uitively, β indicates that every activated neighbor of a boost node

 has β independent chances to activate v . 

In addition, we set ε = 0 . 1 and evaluate the influence spread of

ach solution by 10,0 0 0 Monte-Carlo simulations. Each data point

s averaged over 5 runs. All the code are implemented with C++.

e run the experiments on a Linux server with 24 Core Intel E5

PU and 256 GB RAM. 

.2. Experimental results 

To show the effectiveness and efficiency of the proposed algo-

ithms, we first vary the budget k from 5 to 25 and show the influ-

nce spread in Fig. 2 (a)–(c). Fig. 2 (d) is the ratio of budget for se-

ecting boost nodes of IMD-LB. Meanwhile, we show the increased

nfluence spread brought by the boost nodes (boosted influence

pread) in Fig. 3 (a)–(c). Fig. 3 (d) is the corresponding number of

oost nodes of IMD-LB. 

.2.1. Influence Spread 

In Fig. 2 (a)–(c), the proposed algorithms obviously outperform

ther methods, except when k is small ( Fig. 2 (b)). The results show

hat when the budget is limited we should concentrate the bud-

et on the more expensive seed nodes, which is rather counter-
ntuitive. Gowalla is a more densely connected network and a

mall budget k limits the number of both seed nodes and boost

odes. Thus the increase from selecting boost nodes on Gowalla is

ather limited. Under such circumstance, concentrating more of the

imited budget on seed nodes is worthwhile, despite some boost

odes might have higher gain-cost ratio. For the same reason, the

nfluence spread of IM algorithms (IM-N/IM-R) are higher than the

ashed lines (the influence spread of only seed set) in Fig. 2 (b),

hile in Fig. 2 (a) and 2(c) they are very close. 

Meanwhile, the proposed algorithms achieve much higher influ-

nce spread compared to the dashed lines, which shows the impor-

ance of selecting both seed nodes and boost nodes. With the help

f boost nodes, we can achieve higher influence spread with less

eed nodes. This also indicates by selecting both seed nodes and

oost nodes the budget can be spent more effectively and flexibly. 

In Fig. 2 (d), the ratio of budget for selecting boost nodes (boost

atio) are close to a fixed value in all datasets, showing that it

s not sensitive to the budget. It can be explained by the “small

orld” and “scale free” properties [35,36] . With these properties,

he densely connnected influential nodes share similar influence

pread capabilities and similar number of nearby boost nodes are

elected to boost their influence spread. Intuitively, the boost ratio

s related to specific boosting models which is confirmed by the

ollowing experiments of boost parameter β . 

.2.2. Boosted influence spread and running time 

In Fig. 3 (a)–(c), B-IMD-LB is IMD-LB minus IMD-LB-Seed, B-IMD

s IMD minus IMD-Seed and B-IM is IMD minus max(IM-N,IM-R)

orrespondingly in Fig. 2 (a)–(c). We can see the boosted influence

pread, though occasionally have small decrease, exhibit stable

ncreasing tendency in all the three datasets. The corresponding

umbers of boost nodes are also increasing with the increase

f budget k as shown in Fig. 2 (d). The only exception is that in

ig. 2 (b) when k is small, as for the same reason discussed in

ig. 2 (b). 

In addition, combining Figs. 2 (d) and 3 (d), we find that the

ower average degree of a data set, the less number of boost nodes

re selected. It is consistent to the intuition that a small amount of

oost nodes is enough to transmit the influence if the seed nodes

an get in touch with the rich body of social network through a

andful of paths. 

Meanwhile, we show the running time of the two proposed al-

orithms in Table 3 . We can see IMD-LB always runs faster than

MD with a reduced ratio increasing with the budget k . The only

xception is in Youtube. Since Youtube is the largest dataset, both

MD-LB and IMD need to generate larger numbers of PRR-graphs to

stimate the influence spread when k is small. Running a Greedy

election on a larger set of PRR-graphs request a larger time cost

or IMD, and the IMD-LB thus can achieve a larger time reduction.

n addition, the time cost are step changing with budget k . The
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Fig. 2. Influence spread & ratio of budget for boost nodes with different budgets. 

Fig. 3. Boosted influence spread & number of boost nodes with different budgets. 

 

 

5

 

k  

d

rational is that if the current solution does not match the stopping

condition, we need to double the set of PRR-graphs. 

To conclude, IMD-LB consistently runs faster than IMD and

achieves comparable influence spread in all experiments. 
.2.3. Effects of boost parameter β
To further explore the effects of boost nodes, we fix the budget

 = 15 and vary the boost parameter β from 2 to 6 in the largest

ataset Youtube. Results are shown in Fig. 4 (a) and (b). 
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Fig. 4. Influence spread & boosted influence spread in youtube with budget k = 15 and different boost parameter β . 

Table 4 

Running time and boost results in youtube with k = 15 . 

β Running Time (s) Boost Boost 

IMD-LB IMD Reduced ratio(%) Ratio Number 

2 407 .87 445 .36 8 .42 0.02 6 

3 687 .56 786 .76 12 .63 0.05 17 

4 910 .33 1087 .05 16 .26 0.21 53 

5 1054 .85 1333 .10 20 .87 0.25 65 

6 2188 .41 2945 .65 25 .71 0.43 97 
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With the increase of β , both the influence spread and the

oosted influence spread of the proposed algorithms stably in-

rease as excepted. Meanwhile, we interestingly find the influence

pread of only seed set decrease with β being large. To explain, we

ist the detail of boost nodes in Table 4 . 

In Table 4 , the ratio of budget used for selecting boost nodes

nd the number of boost nodes increase very fast with β being

arge. Generally, the cost of selecting one seed node can be used

o select dozens of boost nodes. When β is large, which means

oosting a node may bring large increase of influence spread, it

eserves to use a large fraction of budget to select boost nodes.

ctually, the boost parameter β (or other boost patterns), in

 considerable degree, decides the boost ratio. Accordingly, by

xperiments or some prior knowledge of finding β , the boost

atio will be subsequently derived which can help finding the

ptimal deployment more efficiently. It is also interesting to learn

ther specific boost patterns from real information spread data.

xploring the relation between boost patterns and boost ratio may

pen new directions for further investigations of improving the

nfluence spread in real world applications. 

As for running time, compared to IMD, IMD-LB achieves a re-

uced ratio which is near proportional to β , and the step changing

roperty is also observed. The results in Table 4 also confirm that

MD-LB is both efficient and effective. 

. Conclusion 

In this work, we present a novel holistic budgeted influ-

nce maximization (HBIM) problem that maximizes the influence

pread by finding the optimal deployment of seed&boost nodes.

e develop two efficient approximation algorithms, IMD and IMD-

B, with data-dependent approximation ratios. Both algorithms are

elicate integrations of Potentially Reverse Reachable Graphs, state-

f-the-art IM method and greedy selection algorithm. Extensive

xperiments are conducted on real social networks and the ex-
erimental results have demonstrated the superiority of the pro-

osed algorithms. Compared with IMD, IMD-LB returns solution

ith comparable quality but has lower computational costs. Specif-

cally, in the experiments we find the boost pattern do affect the

oost ratio, of which the inside relation deserves exploration. In

ddition, it is also interesting to learn the boost patterns from real

nformation spread data. 
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