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Existing studies on influence maximization (IM) mainly focus on activating a set of influential users (seed
nodes). Originated from the seed nodes’ promotion actions (e.g., posting an advertising tweet) on social
networks, a large influence spread might be triggered. However, in practice it is usually very expensive to
have influential users posting original tweets in a promotional event. In contrast, it will incur much lower
costs to have influential users reposting tweets and have ordinary users posting original tweets. Inspired
by these observations, in this paper, we consider the Holistic Budgeted Influence Maximization (HBIM)
problem, which maximizes the influence spread by deploying the budget to select seed nodes (for post-
ing) and boost nodes (for reposting). To tackle the NP-hardness and non-submodularity of the problem,
we devise two efficient algorithms with the data-dependent approximation ratios. Extensive experiments
on real social networks demonstrate the efficiency and effectiveness of our proposed algorithms.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Social media marketing is drawing increasing attentions for in-
dustrial and research communities [1,2]. By selecting a group of in-
fluential users (seed nodes) to post specific tweets such as online
comments, product reviews, etc., a large chain of product adoption
might be triggered [3,4]. To make effective marketing strategies in
social media, Influence Maximization has become a hot research
topic [5,6]. Existing works mainly focus on selecting the optimal
seed nodes to maximize the influence spread, with an underlying
assumption that costs for involving different users are equal. In
fact, this assumption seldom holds and it is usually more expen-
sive to involve influential users in a promotion event than ordi-
nary users. This difference in costs motivated the research on Bud-
geted Influence Maximization problem [7]. However, a random cost
is used for each node in [7], disregarding the fact that selecting in-
fluential users as seed nodes will usually incur expensive cost in
social media marketing.

More recently, Lin et al. [8] propose the influence boost model
in which a set of nodes are “boosted” so that they are more sus-
ceptible to their friends’ influence. By selecting appropriate boost
nodes, the influence spread of a given set of initial seed nodes will
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be increased. In practice, such pattern does exist, e.g., reposting by
influential users may boost the spread of a specific tweet.

However, the work of [8] only consider selecting boost nodes
to increase the influence spread for a given set of seed nodes, with
the equal cost assumption. Actually, the influence boost model can
provide a more flexible mechanism for budget allocation with dif-
ferent cost, providing the fact that persuading a user for reposting
a tweet usually incurs much lower cost than for posting an origi-
nal one. Consequently, a better budget allocation can be achieved
for influence maximization by involving both seed nodes and boost
nodes in selection.

In this paper, we propose a new framework for influence max-
imization, named as Holistic Budgeted Influence Maximization
(HBIM), to explicitly involve both seed and boost nodes in se-
lection. Given the cost of seed/boost nodes, HBIM maximizes the
expected influence spread in a social network with the optimal
deployment of seed nodes (to post) and boost nodes (to repost)
under the budget constraint. By involving both seed nodes and
boost nodes in influence spread, HBIM offers more flexibility in
budget-based influence maximization. As this is the case for most
commercial promotions in social media, we expect our work to
have good applicability in real world scenarios.

Nevertheless, the HBIM is NP-hard and computing the expected
influence spread for a given budget deployment is #P-hard. Mean-
while, the influence spread in HBIM problem is not submodular,
meaning that the greedy algorithm cannot ensure any performance
guarantees. To address these problems, we develop two efficient
algorithms IMD and IMD-LB for HBIM with data-dependent
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Table 1
Meanings of frequent used symbols.

Symbols Meanings

n Number of nodes in the network
m Number of edges in the network
k Total budget

S Seed node set

B Boost node set

cs(u) Cost of selecting node u as seed node

cp(u) Cost of selecting node u as boost node

(S, B) A deployment with seed set S and boost set B
o((S, B)) The expected influence spread of deployment (S, B)

approximation ratios. Extensive experiments are conducted using
real social networks. The experimental results show the efficiency
and effectiveness of our proposed algorithms, and demonstrate the
superiority of proposed algorithms over compared algorithms. It is
worthwhile to summarize our major contributions as follows.

1. We propose a new framework of Holistic Budgeted Influence
Maximization (HBIM), which explicitly involves both seed and
boost nodes selection. This framework may offers more flexibil-
ity in real world scenarios.

2. We prove the HBIM is NP-hard and computing the expected
influence spread for a given budget deployment is #P-hard.
Meanwhile, the influence spread in HBIM problem is not sub-
modular, meaning that the greedy algorithm cannot ensure any
performance guarantees.

3. We develop two efficient algorithms IMD and IMD-LB for HBIM
with provable data-dependent approximation ratios.

4, We conduct extensive experiments and the experimental re-
sults show the efficiency and effectiveness of our proposed al-
gorithms, and demonstrate the superiority of proposed algo-
rithms over compared algorithms.

The rest of this paper is organized as follows. In Section 2, we
discuss the related works of this paper. After that, we formally de-
fine the HBIM problem and discuss its properties in Section 3. In
Section 4, we develop two efficient algorithms for solving HBIM
with data-dependent approximation ratios. Extensive experiments
using real social networks are shown in Section 5. Conclusions are
presented in Section 6. For conveniens, we list the most frequently
used symbols in Table 1.

2. Related works

Domingos and Richardson [9,10] are the first to study influence
maximization problem in social networks and they formulate the
problem with a probabilistic framework. Kempe et al. [5] further
formulate the problem as a discrete optimization problem, which
is widely adopted by subsequent studies. They prove the problem
is NP-hard and propose a greedy algorithm to approximately solve
it by repeatedly selecting the node that brings the largest marginal
influence increase. Following their work, a series of subsequent
studies attempt to improve the empirical efficiency [11-15]. How-
ever, these works still suffer O(knmr) computation time and cannot
scale to large networks.

Recently, Borg et al. [16] make a theoretical breakthrough
and present a near-linear time algorithm wunder the inde-
pendent cascade (IC) model. With time complexity to be
0(ke2(m +n)log®n/e3), their algorithm returns a (1 —1/e — ¢)-
approximate solution with at least (1 —1/n‘) probability. Based
on the Reverse Reachable Sets (RR-sets) proposed in [16], re-
cent subsequent works [17-20] further reduce the time complex-
ity while retaining the same provable approximate ratio. Meth-
ods of TIM [17] and IMM [18] both decrease time complexity to
O((k+¢)(m+ n)10g2n/52) while the latter one further reduce the

unnecessary computational costs. Following these works, the study
of [19] proposes a more tight sampling method which can achieve
a sampling size with a constant factor to the optimal value. More
recently, using a sampling method based on Bottom-K sketch, the
work in [20] further speed up the practical running time with a
provable approximate guarantee of 1 —1/e — ¢ —¢’.

Meanwhile, boosting influence spread of a given seed set also
attracted research attentions. Some existing works increase in-
fluence spread by recommending connections in social networks
[21-23]. More recently, the k-boosting problem is proposed in
[8] by extending the IC model to the influence boosting model.
Given a fixed seed set, it aims to find k boost nodes for increasing
the influence spread. However, these works only consider selecting
boost nodes or adding edges to increase the influence spread for
a given set of seed nodes. Actually, we can explicitly involve both
seed and boost nodes in selection, which may offer more flexibility
in influence maximization.

Another line of research in IM is budgeted influence maxi-
mization [7,24], in which each seed node is assigned a cost and
influence is maximized under certain budget constraint. Existing
works vary in how the costs are derived. Singer [25] propose a
mechanism to elicit the rational agents’ true cost while a random
cost is used in [7,24]. In practice, selecting influential users as
seeds usually incur expensive cost. Actually, we can design a
more flexible mechanism for budget allocation with different cost,
providing the fact that persuading a user for reposting a tweet
usually incurs much lower cost than for posting an original one.
Consequently, a better budget allocation can be achieved for influ-
ence maximization by involving both seed nodes and boost nodes
in selection. As this is the case for most commercial promotions
in social media, we expect our work to have good applicability in
real world scenarios.

Other extensions of influence maximization includes location-
aware influence maximization [26,27], opinion-aware (positive
or negative) influence maximization [28,29] and so on. Other
diffusion-aware and topic model based social network researches
are also actively explored [30-32]. Some recent works heuristi-
cally select influential nodes by utilizing label propagation meth-
ods [33] or considering the eigenvector centrality [34].

3. Problem definition

To present our problem definition, we will start with introduc-
ing the independent cascade (IC) model [5] and its extension of
influence boosting model.

In the IC model, given a graph G = (V,E), each edge ey, cE is
associated with a probability p,y, and each node ueV is initially
inactive. During the diffusion process, a newly activated node only
has one trial to activate its inactive neighboring nodes with proba-
bility pyy. The Influence Maximization problem is to find a set Sc V
of k seed nodes such that the expected influence spread o (S), i.e.,
the expected number of active nodes at the final state, is maxi-
mized as each seed in S is activated at the beginning.

Definition 1 (Influence Boosting Model [8]). Given a graph G =
(V,E), each edge ey, €E is associated with a probability p,, and a
boost probability p),, with p}, > puy. During the influence diffusion
process, if v is (is not) a boost node, each of its newly-activated in-
neighbor u influences v with probability p), (pu).

Given Definition 1, we define a deployment as a binary tu-
ple which consists of two sets of nodes, ie., (S, B), where
S and B are the seed node set and boost node set respec-
tively. We associate each node u with two costs cs;(u) and cp(u)
representing the costs for seed and boost nodes respectively.
Given a deployment (S, B), we denote Cs(S)=>,.s¢s(u) and
Cy(B) = > ycpcp(u) as the total cost of set S and B respectively.
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a
cost(seed) 1 2 3
cost(boost) 0.1 0.3 0.5

Fig. 1. Toy example of HBIM.

We denote o ((S, B)) as the expected influence spread, i.e., the ex-
pected number of final active nodes following deployment (S, B).
Note we assume that cs(-) and cp( - ) are both positive and smaller
than budget k. The Holistic Budgeted Influence Maximization prob-
lem is then formally stated as follows.

Definition 2 (HBIM). Given a social network G = (V,E) and a bud-
get k, the HBIM problem is to find a deployment (S, B)* which
maximize o ((S, B)):

(S.B)* = argmaxsg o ({S,B))
s.t. G(S) +G,(B) < k.

We can reasonably assume that c,( - ) is much smaller than cs( -)
for each node. Otherwise, if we set c,(u) > cs(u), then selecting u as
a seed node takes smaller cost but brings larger increase on o ()
than being selected as a boost node. Meanwhile, by further setting
cs(u) =1 for each node u, we have the following result.

Theorem 1. The HBIM problem is NP-hard, and given a deployment
(S, B), computing o ((S, B)) is #P-hard.

Proof. If we set cp(u)>cs(u) and cs(u) =1 for each node u, the
HBIM problem is reduced to the traditional IM problem and
o ((S, B)) is exactly equal to o (S), since no boost node will be se-
lected. It is known that the IM problem is NP-hard [5] and com-
puting o (S) is #P-hard [12]. Therefore, the theorem is proved. O

To better illustrate HBIM problem, in Fig. 1 we construct a sim-
ple example. In Fig. 1, the propagation probabilities are labeled
above the edges and the boost propagation probabilities are la-
beled below the edges (marked in red). The costs of seed and boost
nodes are listed in the table. Following traditional IM problem and
selecting one node to be seed, then node c is selected since the
expected influence spread of node q, b, c are 1.28, 1.4, 2, respec-
tively. However, under the HBIM setting, a better result exists. By
selecting node a as seed node and b, c as boost nodes, the expected
influence spread will be 2 (same as selecting c as seed), while the
cost is 1.8 (less than selecting c as seed).

Non-submodular. It is easy to see that for any fixed B, o ((S, B))
is monotone and submodular with S (It equals to traditional in-
fluence maximization process [5]). However, for any fixed S, o ({S,
B)) is monotone but not submodular for B. See Fig. 1 as a counter-
example. Let S = {a} and B; = ¢, By = {c}. Then o ({S,B; U {b})) —
0((S,B1)) =042 < 0.6 =0 ({S,B,u{b})) —o ({S,By)) which vio-
lates submodularity.

4. Proposed algorithms

Given Theorem 1 and the non-submodularity of the problem,
the classical greedy algorithm cannot achieve 1 — 1/e approxima-
tion. To tackle these problems, in this section, we propose two
algorithms for solving HBIM problem with data-dependent ap-
proximation by utilizing the Potentially Reverse Reachable graphs
(PRR-graph).

4.1. Potentially reverse reachable graphs

Given a network G = (V, E), the generation process of a random
PRR-graph [8] is presented as follows.

1. Denote each edge e,y in E as “live” with probability of pyy, “live-
upon-boost” with probability of p), — puy, and “blocked” with
probability of 1 — pi,.

2. Denote the residual graph as g with all blocked edges removed,
and sample a random root node r from V.

3. Take the subgraph of g which contains all paths that can reach
r as a random PRR-graph.

Let R be a random PRR-graph with root r. Then we say r is
reachable from a node u if there is a path in R containing only live
edges which starts at u and ends at r. Similarly, given a boost node
set B, we say r is reachable — upon — boosting B from a node u if
there is a path in R which starts at u and ends at r with every edge
eyy ON it either live or live — upon — boost with v e B. Now we de-
fine the concept of cover.

Definition 3 (Cover). Given a deployment (S, B), we say a ran-
dom PRR-graph for root node r is covered by (S, B) if r is either
reachable from a node in S or reachable — upon — boosting B from
a node in S.

Given R as a set of random PRR-graphs and Covg((S,B)) as
the set of PRR-graphs in R that covered by (S, B), we define
RS, B)) = U’;—l -|Covz ({S,B))| where n = |V|. Based on Chernoff
bound, fz((S,B)) can closely estimate o((S, B)) for any (S, B) if
|R| is sufficiently large. Therefore, an intuitive approach for solv-
ing the HBIM problem is to greedily select seed/boost nodes that
marginally maximize fr(-). However, since the greedy algorithm
has no approximation guarantee as discussed above, we turn to
optimize a submodular lower bound of the influence spread and
utilize the Sandwich Approximation (SA) strategy [19] to approach
the optimal solution.

4.2. IMD algorithm

Before detailed into the proposed algorithm, we first present
the lower bound function L((S, B)) of o((S, B)).

Lower bound function. Given a PRR-graph set R and a de-
ployment (S, B), we define the lower bound function L({S,B)) =
E[fz ({(S.B))], where

n
fR((5.B) = o

Lemma 1. L({S, B)) <o

| Uyep Covr ((S, {V})).

({(S, B)) holds for any (S, B).

Proof. By definition, we have U, .gCov (S, Vv) € Covg ({S, B)) which
leads f;({S,B)) < fr({(S.B)) hold for any (S, B). Meanwhile,
by definition we have o ((S,B)) =E[fzr({(S,B))] and L({S,B)) =
E[fz ({(S,B))]. Thus we have L({S, B)) <o ((S, B)) which proves the
lemma. O

Given the lower bound function, we present our algorithm In-
fluence Maximization via Deployment (IMD) in Algorithm 1. It
contains three building blocks, DynamicSampling (Line 1), Deploy-
SelectionLB (Line 2) and DeploySelection (Line 3). The Dynamic-
Sampling algorithm derives from the D-SSA algorithm [19] which
returns a set R of sufficient number of PRR-graphs. Then we greed-
ily select two solutions which marginally maximize f; and fz by
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Algorithm 1: IMD (G, k, ¢).

1 R = DynamicSampling(G, k, €);

2 (S, B); = DeploySelectionLB(G, k, R);

3 (S, B)s = DeploySelection(G, k, R);

4 (S,B)* = argmaxspyc((s.5),.(s.8), ) SR ({S. B));
5 return (S, B)*

DeploySelectionLB and DeploySelection respectively. The final so-
lution is selected between the above two greedy solutions with
larger value of fr. In the following, we will explain the key steps
of the three blocks, and the approximation guarantees and com-
plexity analysis are left in Section 4.3.

4.2.1. DynamicSampling (Algorithm 2)
First, Algorithm 2 generates a set R with size A and in-
voke DeploySelectionLB function to obtain a current solution

Algorithm 2: DynamicSampling(G, k, ¢).

1 A< (1+1/8)%2(2+2¢/3)In2n;
2 R < Generate A random PRR-graphs;
3 ((S,B)L, f1) = DeploySelectionLB(G, k, R);
4 while |R| < (2+2¢/3) - In(2n®) - ne~2/k do
5 | R’ < Generate |R| random PRR-graphs;
6 | f < Covp((S,B)); &1« f1/fo—1; R < RUR/;
7 if £; < ¢ then

£—¢€ £—¢ .
8 €2 < 3iren £3 < 30 170

fre? .
9 &1 < exp(- (2+2e3/3)(11-§£1)(1+62))’
_1)e2

10 8y <« exp(—% +In(2log, n));
1 if §; + 8, < 1/n then
12 | break;
13 | ((S,B)r, fi) = DeploySelectionlB(G, k, R);

4 return R

-

(Line 1-3). Then with the size of R not exceeding a threshold (Line
4), the algorithm generate another set R’ of |R| PRR-graphs to
check the quality of current solution. If the stopping condition is
satisfied (Line 11), it returns the PRR-graph set R.

4.2.2. DeploySelectionLB (Algorithm 3)

Feeded with set R, the DeploySelectionLB algorithm returns a
deployment (S, B); which approximately maximizes L(-). To ex-
plain, we define Ag (v)/cs(v) and A (v)/c,(v) as gain-cost ratio
where

A5 (v) = fr((SU{v},B)) — fr({S. B)),
Ay () = fr({S,BU{V})) — fr ({S.B)).

As we can see, the return of DeploySelectionLB algorithm comes
from two candidate deployments. (S;, B;) (obtained by the first
while loop) is a deployment that contains one seed node with the
largest A¢ (-) and several boost nodes which are greedily selected
by the gain-cost ratio. Meanwhile, (S,, B,) (obtained by the sec-
ond while loop) contains seed nodes and boost nodes which are
selected by the gain-cost ratio. It can be proved that the final so-
lution return by DeploySelectionLB ensures a 1 — 1//e — & approx-
imation ratio under the budget constraint (See Section 4.3).

4.2.3. DeploySelection
After returning the deployment (S, B); which approximately
maximizes L(-), the DeploySelection algorithm greedily selects a

solution (S, B), for maximizing fz(-). It can be implemented by
the same process of DeploySelectionLB algorithm with all A= ()
replaced by A(-), which takes the same formulation of A=(-) by
replacing f; with fz.

4.3. Approximation and complexity

4.3.1. Approximation of DeploySelectionLB

First, Algorithm 2 derives from Algorithm 4 in [19] with slight
differences on the threshold (Line 4) and the updating of param-
eters (Lines 8-10), which ensures the set R returned is sizable
enough if Algorithm 3 achieves an approximate solution (S, B);.

Algorithm 3: DeploySelectionLB (G, k, R).

1 Initialize (S;,B;) with S; =¢ and By =¢; Vs =V;
2 Up = arg maXy cysnes (u)<k Ag(u);

351 =51U{u}; k=k—cs(up); Vs =Vs\uy;

4 while V; £ ¢ do

5 Remove the nodes v with C,(B; U {v}) > k from V.
vy = argmaxyey, Ag 1)/, (V);

6 L B = B4 U{U]}: VSIVS\U1;

7 Initialize (S,, By) with S, =@ and B, =¢; Vs =V;
8 while V; = ¢ do

9 vy = argmaxy Ag (v)/cs(V);

10 vy = argmaxy Ag (V) /cp(v);

n | if Ag(vy)/cs(v1) = Ap (v2)/cp(v2) then

12 if G;(SU {11}) + Gy (B) < k then
13 | S2=Su{n}

14 | V= Vi\vy;

15 else

16 if G(S) + G, (BU {v3}) < k then
17 LBzszu{‘Uz};

18 L Vs =Vi\vg;

-
©

(S,B) = arg max s )c((s.8);.(s.8),) COVR ({5, B));
return ((S, B), Covz ({S,B)))

N
=

Lemma 2 ([19]). If DeploySelectionLB (Algorithm 3) returns a solu-
tion with (1 —1/./e)-approximate ratio for maximizing f, then the
set R returned by DynamicSampling contains no more than, to within
a constant factor, the least number of PRR-graphs, which ensures Line
2 of Algorithm 1 can return a 1 —1//e — e-approximate solution for
maximizing L with at least (1 — 1/n) probability.

The pre-condition of Lemma 2 is that Algorithm 3 ensures a
1 —1/4/e approximation ratio, as proved below.

Lemma 3. Algorithm 3 returns a (1 —1//e) approximate solution
for maximizing fz (-).

Proof. Let (S, B)° be the optimal deployment that maximize f (-).
Meanwhile, we denote c; as the cost of adding the i node into the
deployment in the while loop of GreedySelection in Algorithm 2,
and (S, B)! be the corresponding generated deployment.

Clearly, f5((S.B)°) — fz ({S, B)i~1) is no more than the num-
ber of PRR-graphs covered by (S, B)°, but not covered by (S, B)i-1.
For each seed node or boost node in (S, B)° but not in (S, B)i~1,
the gain-cost ratio is at most (fz ({S, B))) — f ({S, B)"1))/c;, since
the greedy selection maximizes this ratio over all candidate nodes.
Since the total cost of is bounded by k, we have
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fr((S.B)) = fr({S.B)"™")
k . )
< = (RSB - fz(S.B)™).
Next we prove the following equation holds.

3 . i
s = [1-T1, (1- )] mas )
Note for i =1, it obviously holds (We fix fz ({S. B)%) = 0 since S, B
are empty sets). By an induction which suppose the equation holds
for i — 1 with i> 2, we have

fr(S.B))
= fr(S.B)H + Ua(ls B)) — fr ({S.B)"1)
> fr (S, B)i- 1)+ (fa( (SB>)_fR((SB)z 1

= (-0 S (s B>H> + 4 SR (SBY)

== (1-T1 (1-2)) Fes.B)
+ 2 Fr((S.BY)

(=TT (=) s

Based on all the results above, we new discuss three cases of
the return by Algorithm 2.

Case 1: There exists a node s which leads f5 ({{s},%)) >
%fﬁ((s, B)°). If such seed exists, it must be examined by the algo-
rithm as a candidate solution, i.e., (S, B); returned by SingletonSe-
lection (Line 1 in Algorithm 2) with a value of at least %fﬁ ({(S, B)°).

Case 2: There is no seed satisfying Case 1 and the return of
GreedySelection, i.e., (S, B), in Line 2 of Algorithm 2, satisfies
G(S)+C(B) < %k. Then for any v not in SUB, both c¢s(v) and cj(v)
are larger than %k (otherwise, it could be added to (S, B),). There-
fore, there must be only one seed node or one boost node that
n (S, B)° but not in (S, B),. Suppose it is a seed node s. Since
fr{sh.9) < %fi((s, B)°), it follows that f((S,B)°N(S.B)y) =
1fz((S.B)°) and thus f((S.B)2) = 1 fz({S.B)°). See if it is a
boost node s that in (S, B)° but not in (S, B),, it follows that
fr (S {s})) < fr({{s},#)) for any seed set S’ which also confirms
the conclusion.

Case 3: There is no seed satisfying Case 1 and (S, B), satis-
fies Gs(S) + G,(B) > %k. See for ay, ..., an € R* such that 31, g; =
aA, function (1-T[L,(1— %)) achieves its minimum of 1 — (1 —
o/n)" when a; = --- = ay = ¢A/n, for A, a > 0. Let r be the number
of nodes added into (S, B),. Then we have

s = [1-TT, (1= F)] - fes.r)

> [1 -(1-5) } fr((S.B)")
> (1-1/Ve) - fr ({S,B)").

Thus, in each case, a value of the solution produced by the
Algorithm 2 is at least (1—1/Je)- f; ({5, B)°), and the lemma
follows. O

4.4. Sandwich approximation strategy and submodular lower bound

Combining Lemma 2 and 3, the candidate solution (S, B); re-
turned in Line 2 of Algorithm 1 is a (1 — 1/4/e — &)-approximation
of maximizing function L. Since the non-submodularity of the
problem, we utilize the SA Strategy [23] to select the final solution
o ({S, B)*) between (S, B); and (S, B). It is ensured that if (S, B);
is a (1 - 1/4e— ¢g)-approximate solution for maximizing L( -), the

solution o ((S, B)*) returned by Algorithm 1 satisfies:
_ LUSB)Y)
~ o ({5.B)°)
where (S, B)° is optimal solution and OPT = o ({S, B)°).

Let U(-) be a submodular upper bound of the influence spread
and (Sy, By) be the greedy solution with (1 -1/ —¢&) approx-
imate ratio. Then the upper bound version of SA strategy is

0'(<Su, Bu)°) )
= U((Su Bu)")
However, in this work, we only use the lower-bound side since L
is significantly closer to o - than any upper bound we have tested.

o ({S.B)*) 1-1/se—¢)-OPT,

o ((S,B)* (1-1/ve—¢)-OPT.

4.4.1. Complexity

By Lemma 2, the set R returned by DynamicSampling has a
theoretically least size within a constant factor. As the worst case,
the DynamicSampling never meet the stopping condition until |R|
exceed the threshold in Line 4 of Algorithm 2. The threshold, with
value (2 + %8) -In(2nd) - ﬁ is derived from Tang et al. 18] with
a slightly loose factor, where @ is the number of possible deploy-
ment under the budget constraint. See ® is bounded by O(2<E/Cm))
where cp, is the minimum cost. Thus in the worst case, the size of
R is 0((2 4+ 2¢/3) - In(4n) - n¥+1¢=2/k). The DeploySelectionLB al-
gorithm can be implemented by the greedy algorithm for maxi-
mum coverage and runs in time linear to the size of R. In the De-
ploySelection algorithm, after we selecting a node, updating Ag(-)
and Ag(-) for each node takes time linear to the size of R. There-
fore, the time complexity of Algorithm 1 in the worst case is
0((2 +2¢/3) - In(4n) - nk+1/¢2). Combining all the above analysis,
we have the following result.

Theorem 2. With a probability of at least 1 —1/n, the IMD algo-

rithm (Algorithm 1)returns a (1 -1//e—¢)- 5(“55%) )—approximate

solution, of which the worst time complexity is O((2 + 2¢/3) - In(4n) -
nk+1/82).

Though the worst time complexity is expensive when n, k are
large, in the experiments we find the algorithm meets the stopping
condition very fast with common settings of n, k, which demon-
strates that our algorithm is far more practical than the theoreti-
cal analysis. In addition, the ap%)rommation ratio given in Theorem
2 depends on the ratio of L( SB1°) which should be close to one if
the lower bound function 1s close to the actual influence spread. In
the experiments we confirm such closeness on real datasets. Actu-
ally, we can simply use (S, B); returned by Line 2 of Algorithm 1 as
the final solution which retains the same approximate ratio but
can reduce the running time. We name it as IMD-LB algorithm and
compare it with IMD in the experiments.

5. Experiments
5.1. Experimental settings

5.1.1. Datasets

We use three real social networks!, as listed in Table 2. Epin-
ions is a who-trust-whom online social network of a a general con-
sumer review site Epinions.com. Members of the site can decide
whether to “trust” each other. Gowalla is a location-based social
networking website where users share their locations by checking-
in. The friendship network is undirected and was collected using
their public API. Youtube is a video-sharing web site that includes
a social network. Note in the experiments we change each undi-
rected edge to bi-directed edge.

1 http://snap.stanford.edu/data/.
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Table 2

Statistics of data sets.
Data Sets  Nodes  Edges  EdgeType AverageDegree
Epinions 75K 508K directed 6.77

Gowalla 197K 950K
Youtube 11M 2.9M

undirected  9.64
undirected 5.36

5.1.2. Comparison methods

As far as we know, no existing algorithm is applicable to the
HBIM problem. Thus, we compare our proposed algorithms with
the modified IM methods, as listed below. All compared algorithms
are under the same budget constraint.

 IMD. This is Algorithm 1 proposed in this paper, which uses
the SA strategy and takes the better one between the exact
greedy solution and the greedy solution for maximizing the
lower bound function.

IMD-LB. This is an algorithm that directly takes (S, B); in Line 2
of IMD as solution, which is the greedy solution for maximizing
the lower bound function.

IMD-Seed. This method takes only the seed node set in the re-
turned solution of IMD algorithm.

IMD-LB-Seed. This method takes only seed node set in the re-
turned solution of IMD-LB algorithm.

IM-N. This method uses the state-of-the-art IM method D-SSA
[19] to greedily select seed nodes, by decreasing order of the
marginal gain of the number of nodes.

IN-R. This method uses state-of-the-art IM method D-SSA
[19] to greedily select seed nodes, by decreasing order of the
marginal gain of the gain-cost ratio defined in Section 4.2.2.

5.1.3. Parameters setting

For the cost of seed/boost node, we set c;(v) =« (1—
e~ @+ where d, is the out-degree of node v and « is a random
value sampled from Beta distribution, o ~ Be(5, 5). Meanwhile, we
set ¢, (V) = ¢s(V)/dayg Where dqyg is the average out-degree of the
dataset.

Following [8], we set the boost propagation probability of edge
ew as pl, =1— (1 - puw)? (B>1) with py, = 1/din, is the propa-
gation probability, where din, is the in-degree of node v. 8 is the
boost parameter and we set 8 =2 unless otherwise specified. In-
tuitively, 8 indicates that every activated neighbor of a boost node
v has B independent chances to activate v.

In addition, we set € = 0.1 and evaluate the influence spread of
each solution by 10,000 Monte-Carlo simulations. Each data point
is averaged over 5 runs. All the code are implemented with C++.
We run the experiments on a Linux server with 24 Core Intel E5
CPU and 256 GB RAM.

5.2. Experimental results

To show the effectiveness and efficiency of the proposed algo-
rithms, we first vary the budget k from 5 to 25 and show the influ-
ence spread in Fig. 2(a)-(c). Fig. 2(d) is the ratio of budget for se-
lecting boost nodes of IMD-LB. Meanwhile, we show the increased
influence spread brought by the boost nodes (boosted influence
spread) in Fig. 3(a)-(c). Fig. 3(d) is the corresponding number of
boost nodes of IMD-LB.

5.2.1. Influence Spread

In Fig. 2(a)-(c), the proposed algorithms obviously outperform
other methods, except when k is small (Fig. 2(b)). The results show
that when the budget is limited we should concentrate the bud-
get on the more expensive seed nodes, which is rather counter-

intuitive. Gowalla is a more densely connected network and a
small budget k limits the number of both seed nodes and boost
nodes. Thus the increase from selecting boost nodes on Gowalla is
rather limited. Under such circumstance, concentrating more of the
limited budget on seed nodes is worthwhile, despite some boost
nodes might have higher gain-cost ratio. For the same reason, the
influence spread of IM algorithms (IM-N/IM-R) are higher than the
dashed lines (the influence spread of only seed set) in Fig. 2(b),
while in Fig. 2(a) and 2(c) they are very close.

Meanwhile, the proposed algorithms achieve much higher influ-
ence spread compared to the dashed lines, which shows the impor-
tance of selecting both seed nodes and boost nodes. With the help
of boost nodes, we can achieve higher influence spread with less
seed nodes. This also indicates by selecting both seed nodes and
boost nodes the budget can be spent more effectively and flexibly.

In Fig. 2(d), the ratio of budget for selecting boost nodes (boost
ratio) are close to a fixed value in all datasets, showing that it
is not sensitive to the budget. It can be explained by the “small
world” and “scale free” properties [35,36]. With these properties,
the densely connnected influential nodes share similar influence
spread capabilities and similar number of nearby boost nodes are
selected to boost their influence spread. Intuitively, the boost ratio
is related to specific boosting models which is confirmed by the
following experiments of boost parameter S.

5.2.2. Boosted influence spread and running time

In Fig. 3(a)-(c), B-IMD-LB is IMD-LB minus IMD-LB-Seed, B-IMD
is IMD minus IMD-Seed and B-IM is IMD minus max(IM-N,IM-R)
correspondingly in Fig. 2(a)-(c). We can see the boosted influence
spread, though occasionally have small decrease, exhibit stable
increasing tendency in all the three datasets. The corresponding
numbers of boost nodes are also increasing with the increase
of budget k as shown in Fig. 2(d). The only exception is that in
Fig. 2(b) when k is small, as for the same reason discussed in
Fig. 2(b).

In addition, combining Figs. 2(d) and 3(d), we find that the
lower average degree of a data set, the less number of boost nodes
are selected. It is consistent to the intuition that a small amount of
boost nodes is enough to transmit the influence if the seed nodes
can get in touch with the rich body of social network through a
handful of paths.

Meanwhile, we show the running time of the two proposed al-
gorithms in Table 3. We can see IMD-LB always runs faster than
IMD with a reduced ratio increasing with the budget k. The only
exception is in Youtube. Since Youtube is the largest dataset, both
IMD-LB and IMD need to generate larger numbers of PRR-graphs to
estimate the influence spread when k is small. Running a Greedy
selection on a larger set of PRR-graphs request a larger time cost
for IMD, and the IMD-LB thus can achieve a larger time reduction.
In addition, the time cost are step changing with budget k. The

Table 3
Running time with different budgets.

Data sets Running time (s)
k=5 k=10 k=15 k=20 k=25
Ep IMD-LB 229 474 107.5 1179 217.7
IMD 240 521 1181 130.2 244.0
Reduce  4.6% 9.1% 9.0% 9.5% 10.8%
Gw  IMD-LB  170.0 337.2 354.9 761.2 1343.6
IMD 192.0 382.2 419.0 920.7 1647.1

Reduce 11.5% 11.8% 15.3% 17.3% 18.4%

Yt IMD-LB 7274 405.9 407.9 4277 781.8
IMD 841.0 434.9 445.4 450.5 870.3
Reduce 13.5% 6.7% 8.4% 5.1% 10.2%
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of boost nodes with different budgets.

rational is that if the current solution does not match the stopping
condition, we need to double the set of PRR-graphs.

To conclude, IMD-LB consistently runs faster than IMD and
achieves comparable influence spread in all experiments.

5.2.3. Effects of boost parameter f

To further explore the effects of boost nodes, we fix the budget
k =15 and vary the boost parameter 8 from 2 to 6 in the largest
dataset Youtube. Results are shown in Fig. 4(a) and (b).
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Table 4

Running time and boost results in youtube with k = 15.
B Running Time (s) Boost  Boost

IMD-LB IMD Reduced ratio(%) Ratio Number

2 407.87 445.36 842  0.02 6
3 687.56 786.76 12.63  0.05 17
4 910.33 1087.05 16.26  0.21 53
5 1054.85 1333.10 2087 025 65
6 2188.41 2945.65 25.71 0.43 97

With the increase of B, both the influence spread and the
boosted influence spread of the proposed algorithms stably in-
crease as excepted. Meanwhile, we interestingly find the influence
spread of only seed set decrease with g being large. To explain, we
list the detail of boost nodes in Table 4.

In Table 4, the ratio of budget used for selecting boost nodes
and the number of boost nodes increase very fast with 8 being
large. Generally, the cost of selecting one seed node can be used
to select dozens of boost nodes. When § is large, which means
boosting a node may bring large increase of influence spread, it
deserves to use a large fraction of budget to select boost nodes.
Actually, the boost parameter B (or other boost patterns), in
a considerable degree, decides the boost ratio. Accordingly, by
experiments or some prior knowledge of finding S, the boost
ratio will be subsequently derived which can help finding the
optimal deployment more efficiently. It is also interesting to learn
other specific boost patterns from real information spread data.
Exploring the relation between boost patterns and boost ratio may
open new directions for further investigations of improving the
influence spread in real world applications.

As for running time, compared to IMD, IMD-LB achieves a re-
duced ratio which is near proportional to g, and the step changing
property is also observed. The results in Table 4 also confirm that
IMD-LB is both efficient and effective.

6. Conclusion

In this work, we present a novel holistic budgeted influ-
ence maximization (HBIM) problem that maximizes the influence
spread by finding the optimal deployment of seed&boost nodes.
We develop two efficient approximation algorithms, IMD and IMD-
LB, with data-dependent approximation ratios. Both algorithms are
delicate integrations of Potentially Reverse Reachable Graphs, state-
of-the-art IM method and greedy selection algorithm. Extensive
experiments are conducted on real social networks and the ex-

perimental results have demonstrated the superiority of the pro-
posed algorithms. Compared with IMD, IMD-LB returns solution
with comparable quality but has lower computational costs. Specif-
ically, in the experiments we find the boost pattern do affect the
boost ratio, of which the inside relation deserves exploration. In
addition, it is also interesting to learn the boost patterns from real
information spread data.
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