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Abstract—With the explosive growth of online social networks,
many social recommendation methods have been proposed and
demonstrated that social information has potential to improve
the recommendation performance. However, existing social rec-
ommendation methods always assume that the data is missing at
random (MAR) but this is rarely the case. In fact, by analysing
two real-world social recommendation datasets, we observed the
following interesting phenomena: (1) users tend to consume and
rate the items that they like and the items that have been con-
sumed by their friends. (2) When the items have been consumed
by more friends, the average values of the observed ratings will
become smaller, not larger as assumed by the existing models. To
model these phenomena, we integrate the missing not at random
(MNAR) assumption in social recommendation and propose a
new social recommendation method SPMF-MNAR, which models
the observation process of rating data based on user’s preference
and social influence. Extensive experiments conducted on large
real-world datasets validate that SPMF-MNAR achieves better
performance than existing social recommendation methods and
the non-social methods based on MNAR assumption.
Index Terms—MNAR, Social recommendation, Graphic model

I. INTRODUCTION

Nowdays, recommender systems have become a core com-

ponent of many online services such as Amazon and IMDB.

Collaborative filtering (CF), as the most prevalent recom-

mendation model in these systems, infers user’s preference

and produces recommendations based on user’s historical

feedback. In practice, most users consume and rate only a

small fraction of the available items. Thus, traditional CF

algorithms are impeded by the data sparsity problem. To

mitigate this problem, many methods have been proposed

to integrate social network information into recommender

systems. These methods mainly model social influence on

user’s rating values and show that the social-based CF model

has potential to improve recommendation performance [1]–[3].

However, existing social recommendation methods usually

assume that the rating data is missing at random (MAR). That
is, the process by which users select the items to consume and

rate (the observation process of rating data) is independent

from what rating values users give [4]. In fact, the MAR

assumption may not be suitable for the recommendation data

[5] since users consume items they like more than ones they
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Fig. 1. The generative process of rating data in social recommendation

dislike [6]–[8]. Accordingly, mostly large-value ratings are

observed in rating datasets while the low-value ratings are

usually missing. When the MAR assumption is incorrect, these

methods will suffer from the biased parameter estimation and

prediction [7].

To better understand the characteristics of the observation

process of the rating data in social recommendation, in this

paper we conduct a thorough analysis on two well-known

social recommendation datasets, Ciao and Epinions. We make

the following observations: (1) Users tend to consume (rate)

the items that they like. (2) Users tend to consume (rate)

the items that have been consumed by their friends. (3) The

influence of the friends on user’s rating values is smaller

than their influence on the user’s consumption. In fact, we

observed the following interesting phenomenon: When the

items have been consumed by more friends, the average values

of the observed ratings will become smaller, not larger as

assumed by the state-of-the-art models. This phenomenon may

be explained as follows. The items, which are popular among

our friends, easily attract our attention. Under social influence,

we may consume these items even if they do not meet our

tastes. Thus, the average rating values of these items will be

smaller than those of other consumed items.

Motivated by our analysis, in this paper we integrate the

missing not at random (MNAR) assumption in social rec-

ommendation and propose a new recommendation method

SPMF-MNAR. SPMF-MNAR models both the rating values

and the rating observation process. As shown in Fig. 1, on the

one hand, SPMF-MNAR generates users’ consumption based

on social influence and their own preference (Observation
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process). On the other hand, the rating values given by users to

his consumed items are generated by classic CF model based

on their preference (Rating model). Specifically, different from

existing social recommendation methods that exploit social

influence on users’ rating values, we focus on exploiting

social influence on the observation process of rating data.

Then, we develop an accelerated inference algorithm for our

SPMF-MNAR model based on stochastic variational inference

(SVI) to improve scalability. Our comprehensive experimental

results clearly demonstrate the effectiveness of our algorithm

compared to both existing social recommendation methods and

the non-social methods based on MNAR assumption.

The main contributions of this paper are as follows:

• We integrate the missing not at random (MNAR) as-

sumption in social recommendation and conduct sub-

stantial analyses on real-world datasets to explore the

following questions: (1) Is it beneficial to model the

MNAR assumption in the social recommendation? (2)

What contributes to user’s consumption?

• We propose a novel probabilistic model SPMF-MNAR

for social recommendation by integrating the social-based

generative model of rating observation process into the

classic CF rating model. Besides, we develop an efficient

and effective stochastic variational inference method to

infer the posterior for our probabilistic model.

• Our experimental evaluation on large real-world datasets

show that our method outperforms both state-of-the-

art social recommendation methods and the non-social

methods based on MNAR assumption.

The rest of this paper is organized as follows. We briefly

review related works in section 2. The social empirical analy-

ses were conducted in section 3. In section 4, we present the

details of the SPMF-MNAR model. The experiment results

and discussions are presented in section 5. Finally, we con-

clude the paper and present some directions for future work

in section 6.

II. RELATED WORKS

With the exponential growth of information generated on

consumer review websites and e-commerce websites, rec-

ommender systems are drawing more attention from both

academia and industry. For the system with explicit feedback

(numerical ratings), substantial works have been done about

collaborative filtering (CF) model during the past two decades

for its accuracy and scalability [9], [10]. Here, we review

the most related works from two perspectives: one on social

recommendation and the other on the recommendation with

missing not at random assumption (MNAR).

Social recommendation. To address the limitation of the

traditional CF methods such as cold-start problem, many

methods have been proposed to integrate social information

into recommender systems [11]–[15]. These methods mainly

assumed that connected users will share similar preference.

For example, some social recommendation methods including

SoRec [16], TrustSVD [3], PSLF [17], jointly factorized rating

matrix and social(trust) matrix by sharing a common latent

user space. Yang [18] further extended SoRec to their hybrid

method TrustMF that combines both a truster model and a

trustee model. They believed that both the users who trust the

active user and those who are trusted by the user will influence

the user’s rating values on the items. Also, some methods

utilized a social regularization term [11], [19], [20] to model

the social influence on ratings. Specifically, SocialMF [19]

introduces an additional regularization term to constrain user’s

latent preference close to the average of his trusted friends. In

some other methods [21]–[24], users’ ratings are considered

as synthetic results of their preference and social influence.

Specifically, in RSTE [21], user’s rating values are generated

by combing user’s own taste and his friends’ preference.

However, existing social recommendation methods usually

assumed that the rating data is missing at random (MAR).

In fact, our analysis in section 3 shows that this is not the

case. Thus, without modeling observation process of rating

data, inferences can be biased and prediction accuracy suffers

[7]. Besides, we observe that the social influence on user’s

consumption is larger than the influence on user’s rating

values. It will be interesting and effective to exploit the social

influence on the rating observe process (user’s consumption),

which has not been considered by these works.

Recommendation with MNAR assumption. Most recent

CF methods assumed that the CF data is missing at random

(MAR). That is, the process that selects the observed data is

independent of the value of unobserved rating data. However,

as mentioned in [4], [5], [7], [8], when the MAR assumption

is incorrect, inferences are biased and predictive performance

can suffer. In fact, there are many evidences that CF data

is missing not at random (MNAR) [5], [6]. Thus, to deal

with this problem, some CF methods with MNAR assumption

have been proposed during the past decade. These methods

had the generative process of user’s consumption (Observation

process) to model the dependency between which items a user

consumes (rates) and what ratings the user gives. Marlin and

Zemel [4] used a mixture of Multinomials (MM) to model

user’s rating value and generated user’s consumption based

on this value. Hernandez-Lobato et al. [7] noticed the poor

flexibility of MM model and the powerful performance of

matrix factorization method. Thus they proposed a probabilis-

tic matrix factorization model to deal with CF data that is

missing not at random (MNAR). More recently, Ohsawa et al.

[6] further extended PMF [10] to their GPMF by considering

the dependency between why a user consumes an item and

how that affects the rating value. Thus, users’ consumption

had been modeled in their GPMF to control the weights on

different latent dimensions when they performed probabilistic

matrix factorization on rating matrix.

However, all of these methods ignore the social influence

on user’s behavior. In fact, connected users in a social network

often (un)knowingly recommend products to each other and

their consumption will inevitably be influenced by their social

relations. [25], [26]. Thus, the SPMF-MNAR proposed in this

paper, models user’s consumption with social influence for

better estimating user’s preference on items.

30



1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Rating value

P
er

ce
nt

ag
e

Ciao
Epinions

(a) The distribution of the rating values of the
consumed items

0 1 2 3 4 5 6−10 11−20 >20
3.7

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

Number of friends who have consumed the item

A
ve

ra
ge

 r
at

in
g 

va
lu

es

 

 

Ciao
Epinions

(b) The average rating values with varying num-
ber of friends who have consumed the item

0 1 2 3 4 5 6−10 11−20 >20
0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of friends who have consumed the item

P
er

ce
nt

ag
e 

of
 t

he
 lo

w
−v

al
ue

 r
at

in
gs

 

 

Ciao
Epinions

(c) The percentage of the low-value ratings with
varying number of friends who have consumed
the item

Ciao Epinions
0

0.005

0.01

0.015

0.02

Dataset

C
on

su
m

pt
io

n 
si

m
ila

ri
ty

 

 

Connected users
Arbitrary users

(d) The average consumption simi-
larity between the connected users
and arbitrary two users

Ciao Epinions
0

0.1

0.2

0.3

0.4

0.5

Dataset

R
at

in
g 

si
m

ila
ri

ty

 

 

Connected users
Arbitrary users

(e) The average rating similarity be-
tween the connected users and arbi-
trary two users

0

0.005

0.01

0.015

Number of common trustees
C

on
su

m
pt

io
n 

si
m

ila
ri

ty

 

 

0

1−
2

3−
5

6−
10

11
−2
0

21
−3
0

31
−4
0

>4
0

Ciao
Epinions

(f) The consumption similarity for
user pairs with their varying number
of common friends

0

0.1

0.2

0.3

0.4

0.5

Number of common trustees

R
at

in
g 

si
m

ila
ri

ty

 

 

0

1−
2

3−
5

6−
10

11
−2
0

21
−3
0

31
−4
0

>4
0

Ciao
Epinions

(g) The rating similarity for user
pairs with their varying number of
common friends

Fig. 2. The results of statistics analyses on datasets Ciao and Epinions

TABLE I
STATISTICS OF TWO DATASETS

Features Epinions Ciao
Number of users 49,289 7,375
Number of items 139,738 106,797
Number of ratings 664,824 280,391
Density of ratings 0.0097% 0.0356%
Number of edges 487,183 111,781
Density of edges 0.0201% 0.2055%

III. USER’S CONSUMPTION IN SOCIAL-BASED

RECOMMENDATION DATASETS

In this section, we conducted a thorough analysis of two

social-based recommendation datasets, Ciao and Epinions. Our

analysis is intended to address the following questions: (1)

Is it beneficial to model the MNAR assumption in social

recommendation? (2) What contributes to users’ consumption?

A. Dataset description

We use two datasets Epinions1 and Ciao2 for our analyses

and experiments on social recommendation. Epinions and Ciao

are two knowledge sharing websites where users can give

ratings to their consumed products from 1 to 5. These datasets

contain several kinds of information: The consumption infor-

mation, which denotes the items a user have consumed(rated),

1http://www.trustlet.org/epinions
2http://www.cse.msu.edu/∼tangjili/trust

can be got from the observation process of rating data since a

user must consume an item before he rates it [6]. Also there

is rating value information, which denotes the observed rating

values that the user gave to his consumed items. Besides, these

datasets contain social information since the user in the web-

sites can maintain a “trust” (friend) list which forms a directed

social network between users. Thus, Epinions and Ciao are

ideal datasets that have been used widely for analyses and

experiments on social recommendation. The datasets statistics

are presented in Table I.

B. Analyses of user’s consumption in social recommendation

To answer above questions, we conducted five statistics

analyses: (1) We calculate the distribution of the rating values

for those consumed items as shown in Fig. 2(a). (2) We

calculate the average rating similarity and consumption sim-

ilarity for each connected pair. The rating similarity between

two users is represented by the Pearson correlation coefficient

[15] between their rating values on the common consumed

items. The consumption similarity between two users is the

Jaccard coefficient [27] between the sets of items consumed by

them. In comparison, we calculate the average rating similarity

and consumption similarity between arbitrary two users. The

results are presented in Fig. 2(d),2(e). (3) We divide pairs

of users into several groups according to the number of

their common friends. We then calculate the average rating

similarity and consumption similarity between every user pairs

in each group. The results are shown in Fig. 2(f),2(g). (4)
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We divide observed ratings into several parts according to the

number of friends have consumed the item. Then we calculate

the average rating values and the percent of the low-value

ratings (less than 3) in each part. The results are presented in

Fig. 2(b),2(c).

Four important observations are concluded from these re-

sults.

Observation 1: Users tend to consume (rate) the items that
they like.

As shown in Fig. 2(a), more than 70% ratings are larger than

3 and just 15% ratings are less than 3. High-value ratings are

usually given by the users to their consumed items. That is,

users tend to consume the items that they think they will like.

This observation is consistent with the finding in [4]. They

conduct online survey to collect users’ ratings for randomly

selected items and find that the average rating values for these

random items are much smaller than the rating values for the

user-selected (consumed) items.

Observation 2: Users tend to consume (rate) the items that
have been consumed by their friends.

Observation 3: The influence of the friends on user’s ratings
is smaller than their influence on the user’s consumption.

As shown in Fig. 2(d),2(e), connected users tend to consume

much more items in common, but their rating values does not

exhibit so much more similarity than ordinary user pairs as

their consumption. Meanwhile, as shown in Fig. 2(f),2(g), as

the number of common friends increases, users tend to have

more commonality in their consumption while their rating

values remain mostly unaffected by the number of their shared

social relations. Thus, comparing with users’ rating values,

their consumption is more sensitive to the social influence.

Observation 4: The rating value of a user decreases with

increasing number of friends that have consumed the item.

As shown in Fig. 2(c),2(b), when the items are consumed by

more friends, the average rating values will become smaller

and the percent of the low-value ratings will become larger.

Based on these observations, we can answer above two

questions:

Conclusion 1: It is beneficial to model MNAR assumption

in the social recommendation.

On the one hand, based on our observations, we can conclude

that the rating data is missing not at random. Specifically,

users tend to consume the items that they like and the low-

value ratings are usually missing (Observation 1). When we

deal with MNAR data without MNAR assumption, inferences

can be biased and prediction accuracy suffers [7]. On the

other hand, as mentioned in our observation 3, comparing

with users’ rating values their consumption is more strongly

influenced by their friends. It seems effective to further exploit

social influence on users’ consumption for better inferring

users true preference.

Conclusion 2: Users’ consumption can be considered as

contributions of users’ preference and social influence.

On the one hand, preference precedes choices because choices

are made to maximize preference [28]. When users make the

decisions on the consumption, they will observe themselves

and judge whether they will like these items [7]. On the

other hand, in the social network, each of us belongs to

some content-shared communities [29]. Users are explicitly

linked and often (un)knowingly recommend products/services

to friends [17]. The items consumed by our friends are more

likely brought to our attention and stored in episodic memory

[25], which contributes to our consumption [26]. Also, the

interesting Observation 4 can be explained by this conclusion.

Comparing with the popular items among user’s friends, user’s

consumption on these unpopular items was more attributed to

his preference. Thus, when the items have been consumed by

more friends, the average rating values will become smaller.

IV. PROBLEM AND ALGORITHM

In this section, we present our SPMF-MNAR model. we

will start with the problem definition.

A. Problem definition

In recommender systems, we are given a set of users U
(including n users) and a set of items I (including m items)

as well as an observed rating set Ro = {rij : i ∈ U, j ∈
I, (i, j) ∈ O}, where the entries rij denote the rating value

of item j given by user i and O is the set of user-item pairs

for which a rating is observed. In practice, Ro is usually a

small subset of the entries of a complete n×m rating matrix

R. Note that the observation process of rating data indicates

user’s consumption since a user must consume an item before

he rates it [6], [7]. Thus, we model the location of the entries

included in Ro using a n × m consumption matrix X . For

each entry in X , xij = 1 denotes user i have consumed (and

rated) item j (rij ∈ Ro is observed) and xij = 0 means

not (rij /∈ Ro). When it comes to social recommendation,

we also have social network information, which indicates

the connection between users. Let gi = [gi1, g
i
2, . . . g

i
|gi|] be

a vector, which we refer to as the friends of user i. The
k-th element of gi (gik) denotes the id of k-th friend of

user i. The length of vector gi (
∣
∣gi

∣
∣) denotes the number of

friends of user i. The task of social recommendation is to

predict user’s preference(ratings) on items precisely so that

the recommendations will meet user’s taste.

B. Social Probabilistic Matrix Factorization with missing not
at random data assumption

Different from existing social recommendation methods, we

integrate MNAR assumption into social recommendation and

model the observation process of rating data. As shown in

Fig. 1, on the one hand, we generate users’ consumption

based on social influence and their own preference. On the

other hand, the rating values given by users to their consumed

items are generated by the classic CF model. Here we start

with the overall generative process behind SPMF-MNAR, and

then describe the details step by step. For each consumption

xij ∈ X and rating value rij ∈ R, SPMF-MNAR assumes the

following generative process, corresponding to the graphical

model presented in Fig. 3.
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Fig. 3. The graphical model of SPMF-MNAR.

1) Draw the influence of friend’s consumption: η0 ∼
Beta(ζ), η1 ∼ Beta(ζ).

2) For each user i:

I. Draw the bias: ai ∼ N (0, σ2a).
II. Draw the latent preference: ui ∼ N (0, σ2uI).
III. Draw the acceptive threshold: di ∼ N (0, σ2d).
IV. Draw the importance of different components on the

consumption: βi = Dir(α).

3) For each item j:

I. Draw the bias: bj ∼ N (0, σ2b ).
II. Draw the latent attribute: vj ∼ N (0, σ2vI).

4) For each user-item pair (i, j):

I. Draw user’s preference on the item: zij ∼
N (u�i vj + ai + bj , σ2z).

II. Draw the component contributing to the consump-

tion: τij ∼Multinomial(βi).
III. When τij0 == 1, draw the consumption based on

user’s preference: xij ∼ Bernoulli(xij |σ(c(zij −
di))).

IV. When τijk == 1(1 ≤ k ≤ ∣
∣gi

∣
∣), draw the

consumption based on the influence of user’s k-th
friend: xij ∼ Bernoulli(xij |η1xgikj+η0(1−xgikj)).

5) For each observed rating value rij :

I. Draw the rating value based on user’s preference on

the item: rij ∼ N (zij , σ2r).
Several assumptions are made in the SPMF-MNAR model.
First, users’ preference on the items can be generated by

probabilistic matrix factorization [10]. For each user-item pair
(i, j), we generate a latent continuous variable zij , which
characterizes the preference of user i on item j as follow:

p(zij |ai, bj , ui, vj) = N (zij |ai + bj + u�i vj , σ
2
z) (1)

where N (.) denotes Gaussian distribution; ui denotes the
D-dimensional latent preference vector of user i; vj denotes
the D-dimensional latent attribute vector of item j; ai and bj
denote the biases of user i and item j. Here we use ai and
bj to capture the common phenomenon that some users tend
to be generous and have a wide range of interest while some
items tend to have high quality [3]. Then, we can generate
user’s rating values based on his preference as follow:

p(rij |zij) = N (rij |zij , σ2r) (2)

Here we remark that our simple rating model can be

replaced by some sophisticated social-based recommended

models such as SocialMF [19], TrustMF [18]. Also, we do

agree that modeling social influence on ratings is potential

to further improve recommendation performance. However,

in this paper we focus on exploiting social influence on the

observation process (user’s consumption) and exploring how

it improves recommendation performance, while the social-

based rating model has been explored by substantial related

literatures and is also orthogonal to our proposed model.

Thus, we try to isolate the effect of these sophisticated rating

models to set off the effect of our social-based model of the

observation process.
Second, motivated by the analyses in section 3, user’s

consumption is modeled as contributions of user’s preference
and social influence. For each element xij ∈ X , with prob-
ability βi0, xij is generated based on user’s own preference
xij ∼ p(xij |zij , di, c). With probability βik (k = 1, 2, . . .

∣
∣gi

∣
∣),

xij is generated based on the influence of his k-th friends
xij ∼ p(xij |xgikj , η). Here βik for k = 0, 1, . . .

∣
∣gi

∣
∣ denotes

the mixing coefficients for each user i, which captures the
importance of social influence and user’s own preference on

his consumption. βi = [βi0, βi1, . . . βi|gi|] satisfies
|gi|∑

k=0

βik = 1

as it follows a Dirichlet distribution with parameter α. Based
on this generative process, xij can be represented as random
mixtures based on users’ own preference and social influence:

p(xij) = βi0p(xij |zij , di, c) +

|gi|∑
k=1

βikp(xij |xgi
k
j , η) (3)

To facilitate the derivation and description, we introduce

Multinomial auxiliary variables τij ∼ Mult(βi) to indicate

which component contributes to the consumption xij . τij =
[τij0, τij1, . . . τij|gi|] is a

∣
∣gi

∣
∣+ 1 dimensional binary random

variable having a 1-of-K representation in which a particular

element is equal to 1 and all other elements are equal to 0.
Third, when xij was generated based on user’s own pref-

erence (τij0 = 1), Bernoulli-logit model could be used to
capture the phenomenon that users tend to consume the items
that they like (our observation 1):

p(xij |zij , di, c, τij0 = 1) = Bernoulli(xij |σ(c(zij − di))) (4)

where σ(.) denotes logistic function. We introduce offset vari-

able di, which is defined as acceptive threshold for each user i,
to capture the following intuition: When user’s preference on

the item is larger than the acceptive threshold (zij > di), users
tend to consume the item; When the preference is smaller than

the acceptive threshold (zij < di), users tend to reject it. Also
we introduce a scale parameter c > 0 to control the influence

of user’s preference zij on his consumption xij . When the

scale parameter c has larger value, xij will be more sensitive to
zij . In other words, a slight disturbance on zij will contribute
to the more change on the probability distribution of xij . In
summary, we can find that the larger zij will bring the larger

values of p(xij = 1), indicating the user is more likely to

consume the item. It coincides with our observation 1.
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Fourth, when xij was generated based on the influence of
his k-th friend (τijk = 1), we model xij by Bernoulli distribu-
tion and the Bernoulli parameter depends on the consumption
of his k-th friend (xgikj):

p(xij |xgi
k
j , η, τijk = 1) = Bernoulli(xij |η1xgi

k
j + η0(1 − xgi

k
j))

(5)

The parameters η = [η0, η1] indicate the conditional depen-

dency between user’s consumption and the selected friend’s

consumption. η1 = p(xij = 1|xkj = 1, τijk = 1) denotes the
probability that the user will follow his friend’s consumption to

consume the item. η0 = p(xij = 1|xkj = 0, τijk = 1) denotes
the probability that the user will consume the item when his

friend didn’t consume it. Typically, users tend to consume the

items that have been consumed by their friends and thus η0
should be different from η1. Our experiment results presented
in section 5 validate this point and show that the posterior

expectation of η1 is much larger than η0.

C. Approximate Inference

Considering that the exact posterior probability of SPMF-

MNAR is not tractable to compute, so we develop an efficient

approximate method to compute posterior based on variational

inference. The mean field theory drives us to partition latent

variables into disjoint groups and these variables are governed

by their own variational parameters. Besides, we can specify

the form of the factored variational distribution of each vari-

able as same as its corresponding conditional [30]. That is, we

define variational distribution as follow:

q(u, v, a, b, d, β, τ, η, z) =
∏
i∈U

(
N (ai|μa

i , (Λ
a
i )

−1)

× N (ui|μu
i , (Λ

u
i )

−1)N (di|μd
i , (Λ

d
i )

−1)Dir(βi|κβ
i )
)

×
∏
j∈I

N (bj |μb
j , (Λ

b
j)

−1
)N (vj |μv

j , (Λ
v
j )

−1)
∏
l=0,1

Beta(ηl|κη
l )

×
∏

i∈U,j∈I

Mult(τij |ϕij)N (zij |μz
ij , (Λ

z
ij)

−1) (6)

Note that Bernoulli-logit likelihood does not admit a conju-
gate prior. To address this problem we employ the Gaussian
lower bound on the logistic function [31] as follow:

σ(x) � h(x, ξ) = σ(ξ) exp((x − ξ)/2 − λ(ξ)(x2 − ξ2))

λ(ξ) =
1

2ξ
(σ(ξ) − 1

2
) (7)

which is a tight lower bound on the logistic function, with an
additional parameter ξ. Thus, we have the following objective
function, a bound on the log likelihood of the observations.

L(q) = ln p(Ro, X) � Eq[ln p(R
o, X,Θ)] − Eq[ln q(Θ)]

� L̃(q, ξ) =
∑

i∈U,j∈I

Eq[τij0 ln(h((2xij − 1)γij , ξij))]

+
∑

i∈U,j∈I

|gi|∑
k=1

Eq[τijk ln p(xij |xgi
k
j , η)]

+
∑

i∈U,j∈I

Eq[ln p(τij |βi) + ln p(zij |ai, bj , ui, vj , σz)]

Algorithm 1 Stochastic Variational Inference of SPMF-

MNAR
Initialize global variational parameters randomly;
while not converge do
Subsample a set S of user-item pairs
Local step:
for each user-item pair (i, j) ∈ S do
while not converge do
Update the parameter ξij based on variational parameters
of global and local variables. {Equation (15),(16)}
Update the variational parameters of local variables
zij , τij based on global variational parameters and the
parameter ξij . {Equation (17)-(19)}

end while
end for
Global step:
Update the variational parameters of global variables
u, v, a, b, d, β, η with an appropriate step-size ρt based on
local variational parameters. {Equation (20)-(31)}.

end while

+
∑
i∈U

Eq[ln p(ui|σu) + ln p(ai|σa) + ln p(βi|α) + ln p(di|σd)]

+
∑
j∈I

Eq[ln p(vi|σv) + ln p(bi|σb)] +
∑

ij∈Ro

Eq[ln p(rij |zij)]

+
∑
l=0,1

Eq[ln p(ηl|ζ)] − Eq[ln q(Θ)] (8)

where Θ ≡ {u, v, a, b, d, β, τ, η, z} denotes latent variables

and γij = c(zij − di). We use the coordinate ascent method

to optimize variational parameters in turns by optimizing the

lower bound L̃(q, ξ). Note that there are n × m entries for

latent local variables zij , τij , ξij . It is inefficient to learn each
entry of those local variables in one iteration. In fact, we pay

more attention to learn the global variables u, v, a, b, d, β, η.
Thus stochastic variational inference (SVI) [30] can be used to

optimize global variational parameters quickly. We can learn

something about global variational parameters from only a

subset of the data in each step. In Algorithm 1, we present the

pseudo-code of our stochastic variational inference algorithm,

with details in Appendix.

Complexity Analysis. The computational time of inference
is mainly taken by updating variational parameters. In the local

step, we just update the local parameters for the user-item pair

(i, j) in the set S. The time to update these local variational

parameters is O(tl(|S| + |G|)) (Equation (15)-(19)), where

|S| denotes the number of user-item pairs in the set S, |G|
denotes the number of edges in the datasets, tl denotes the
number of local iterations in the local step. In the global step,

we just sum over the entries in the set S. The computational
complexities for updating these global variational parameters

are O((n+m)D3+ |S|+ |G|) (Equation (20)-(31)), where n
and m denote the number of users and items in the dataset.

D denotes the dimension of the latent vector ui, vj . Hence,
the overall computational complexity in one step is O((n +
m)D3+tl(|S|+|G|)). In fact, we usually let D, tl be the fixed
small numbers and the number of sampled user-item pairs (|S|)
be twice as large as the number of observed ratings. Thus, our

algorithm is efficient on sparse recommendation data.
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D. Prediction

Once the posterior is fit, we can predict the rating value
of item j given by user i based on those global variational
parameters and the specific value of xij . we calculate the
predicted rating by the expectation of rij as follow:

r̂ij = E[rij |xij ,Θ] = E[zij |xij ,Θ] ≈ Eq(zij |xij ,Θ)[zij ] (9)

Here we can perform an additional local step of user-item

pair (i, j) to get the posterior expectation of zij .
Note that MNAR assumption has been modeled in SPMF-

MNAR. Thus, we can also make recommendations based on
the predicted consumption, which combines user’s preference
and social influence:

x̂ij = Eq[p(xij = 1)] = βi0Eq[p(xij = 1|zij , di, c)]

+

|gi|∑
k=1

βikEq[p(xij = 1|η1xgi
k
j + η0(1 − xgi

k
j)]

= βi0Eq[σ(c(zij − di))] +

|gi|∑
k=1

βikEq[η1xgi
k
j + η0(1 − xgi

k
j)]

≈ βi0σ(ϕ(s2ij)αij) +

|gi|∑
k=1

βikEq[η1xgi
k
j + η0(1 − xgi

k
j)] (10)

where we approximate the logistic function with a rescaled

probit function that has the same slope at the origin as the

logistic function σ(.) [32], and ϕ(x) = (1+πx/8)−1/2, s2ij =
Dq[c(zij − di)], αij = Eq[c(zij − di)].

V. EXPERIMENTS AND RESULTS

In this section, we evaluate our SPMF-MNAR on real-world

datasets. We start with the description of the experimental

protocol.

A. Experimental protocol

The two datasets, Epinions, Ciao presented in section 3

are used in our experiments. These datasets contain user’s

consumption, ratings and social relations. A 5-fold cross-

validation for learning and testing is used in our experiment

where the observed ratings are divided into 5 folds. Specially,

when an rij with xij = 1 is added to the test set, we fix that

xij to zero in the train phase to indicate that the entry rij is
not observed as recent works [7].

The optimal experimental settings for our methods are

determined either by the grid search in our experiments or

suggested by previous works. Specifically, for hyperparame-

ters, we set σ2r = 0.1,σ
2
d = 0.2,D = 10 and others to 1 accross

both datasets, while the performance with varying values of

parameter c was presented in Fig. 5. For the parameters of

step-size, we refer to [30] and set ρt = (t0 + t)
−ϑ,t0 =

0, ϑ = 0.8. For sampled set S, in each step, we choose all

the observed entries with xij = 1 and randomly sample the

same number of the entries with xij = 0 to train our model
3.

3Source code is available at https://github.com/jiawei-chen/spmf-mnar

B. Evaluation metrics

We adopt the following metrics to evaluate the predictive

accuracy and recommendation performance:
Mean Absolute Error (MAE), Root Mean Square Error

(RMSE): Two well-known metrics to evaluate the predictive
accuracy which are defined as follows:

MAE =

∑
i,j |r̂ij − rij |

N
(11)

RMSE =

√∑
i,j (r̂ij − rij)

2

N
(12)

where N is the number of observed ratings in the test set, rij
is the observed rating values of item j given by user i and r̂ij
is the predicted rating value.
NDCG (Normalized Discounted Cumulative Gain): This

is widely used in information retrieval and it measures the
quality of ranking through discounted importance based on
positions. In recommendation, NDCG is computed as follow:

NDCG =
1

|U |
∑
i∈U

DCGi

IDCGi
(13)

where DCGi is defined as follow and IDCGi is the ideal
value of DCGi coming from the best ranking.

DCGi =
∑

i∈Fav(i)

1

log2(rankij + 1)
(14)

where rankij represents the rank of the item j in the

recommended list of the user i, and Fav(i) denotes the set

of favorite items in test data for user i. As recent works

[13], highly rated items in the test set will be considered as

favorite items (larger than 3 in a 5-star system). NDCG can be

interpreted as the ease of finding all favorite items, as higher

numbers indicate the favorite items are higher in the list.

C. Compared methods

To demonstrate the effectiveness of our SPMF-MNAR

model, we compared it with the following methods:

• Two baseline Useravg, PMF [7]: Useravg is a non-social

simple baseline, which makes use of the average observed

ratings of users to predict missing rating values. PMF is a

non-social classic probabilistic matrix factorization model

on rating data.

• Social recommendation methods without MNAR assump-

tion: SoRec [16], RSTE [21], SocialMF [19], TrustMF

[18], TrustSVD [3] are the state-of-the-art methods in

social recommendation. Note that MNAR assumption

has not been considered by these social recommendation

methods.

• Non-social recommendation methods with MNAR as-

sumption: GPMF [6] is a state-of-the-art method with

missing not at random data assumption. We also design

another method SPMF-MNAR-nos as a comparison to

show the effect of modeling social influence on the

rating observation process. SPMF-MNAR-nos, a simple

version of SPMF-MNAR, leaves out the social influence

and generates user’s consumption just based on user’s

preference.
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TABLE II
THE CHARACTERISTICS AND PERFORMANCE COMPARISON OF THE COMPARED METHODS. THE BOLDFACE FONT DENOTES THE WINNER IN THAT

COLUMN. ALSO WE PRESENT THE RELATIVE IMPROVEMENT ACHIEVED BY THE WINNER OVER THE COMPARISONS.

Methods
Characteristics Performance on Ciao Performance on Epinions

Social? MNAR? MAE Impv RMSE Impv MAE Impv RMSE Impv
Useravg \ \ 0.7790 10.32% 1.0266 8.12% 0.9293 18.41% 1.2024 14.77%
PMF \ \ 0.7672 8.65% 1.0081 6.17% 0.8503 8.34% 1.0869 3.75%
SoRec

√ \ 0.7743 9.65% 0.9965 4.95% 0.8565 9.13% 1.0792 3.01%
RSTE

√ \ 0.7679 8.75% 1.0323 8.72% 0.8732 11.26% 1.1093 5.88%
SocialMF

√ \ 0.7583 7.39% 0.9924 4.52% 0.8537 8.77% 1.0764 2.74%
TrustMF

√ \ 0.7635 8.12% 0.9781 3.01% 0.8519 8.54% 1.0676 1.90%
TrustSVD

√ \ 0.7285 3.17% 0.9598 1.08% 0.8132 3.61% 1.0584 1.03%
GPMF \ √

0.7511 6.37% 0.9830 3.53% 0.8321 6.02% 1.0712 2.25%
SPMF-MNAR-nos \ √

0.7231 2.40% 0.9639 1.52% 0.8130 3.58% 1.0671 1.86%
SPMF-MNAR

√ √
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Fig. 4. NDCG of the compared methods.

D. Experimental results and analyses

Table II presents the performances of all ten recommenda-

tion methods on both datasets, in terms of MAE and RMSE.

We observe that SPMF-MNAR consistently outperforms all

the other compared methods on both datasets. The improve-

ment of SPMF-MNAR over other methods can be attributed

to two aspects: (1) Rating data in social recommendation is

missing not at random. If the methods keep the MAR (missing

at random) assumption and ignore the dependency between

which items a user consumes (rates) and what ratings the user

gives, their predictive performance will suffer. This leads to

better performance of our method than these methods without

MNAR assumption. (2) We integrate social information into

the recommendation. Specially, instead of exploiting social

influence on users’ rating values which has been discussed

by substantial social recommendation literatures, our SPMF-

MNAR model attempt to exploit social influence on the rating

observation process (user’s consumption) and observe how

it improves the recommendation performance. In fact, our

analyses on datasets suggest that in the content-shared social

network, connected users often (un)knowingly recommend

products to each other and thus their consumption will be

heavily influenced by the social relations (Observation 2).

As a result, SPMF-MNAR achieves better performance than

these non-social methods including the SPMF-MNAR-nos, the

special non-social case of SPMF-MNAR.

NDCG comparison. Fig. 4 shows the performance of the

compared methods in terms of NDCG. NDCG measures the

quality of ranking and the larger values indicate the better

performance. We observe that SPMF-MNAR again outper-

TABLE III
THE OPTIMAL VARIATIONAL DISTRIBUTIONS OF PARAMETERS η0 AND η1 ,

WHERE B(.) DENOTES BETA DISTRIBUTION.

Dataset q(η1) q(η0)
Ciao B(7.4× 103, 1.0× 100) B(2.2× 100, 1.8× 105)

Epinions B(3.1× 104, 1.0× 100) B(2.5× 101, 4.0× 105)

forms other methods, consistent with the findings in Fig. 4.

Especially, the relative improvement of SPMF-MNAR over its

non-social special case SPMF-MNAR-nos is apparent: 22.3%

on dataset Ciao and 19.3% on dataset Epinions in terms of

NDCG. These results clearly demonstrate the effectiveness of

modeling social influence on user’s consumption.

Impact of parameter c. Another experiment is conducted
to investigate how parameter c affects the performance of

SPMF-MNAR, where c is a scale parameter controlling the

influence of user’s preference (zij) on his consumption (xij).
The results in terms of MAE with varying c are presented in

Fig. 5. As we can see, as c becomes larger, the performance
becomes better first. This is because in social recommendation

user’s consumption is not independent with user’s preference.

User’s consumption also reflect user’s preference on the items.

Thus, when we let user’s consumption (xij) be more sensitive
to user’s preference (zij) in our model, we can infer more pre-
cise user’s preference (zij) reversely based on his consumption
information. However, when c surpasses a threshold (c > 0.5),
the performance becomes worse with further increase of c.
As c becomes larger, the inference of user’s preference will

depend more on his consumption. Other important information

including user’s real rating values becomes unimportant on the

inference of user’s preference, which brings the worse results.

Thus, when c is set to a appropriate value (c = 0.5), when c
can best balance the importance of these information, SPMF-

MNAR achieves best performance.

Parameter η0 VS parameter η1. We also present the

optimal variational distribution of parameter η0 and param-

eter η1 as shown in Table III. parameters η0, η1 indicate

the conditional dependency between user’s consumption and

the selected friend’s consumption. η1 = p(xij = 1|xkj =
1, τijk = 1) denotes the probability that the user will fol-

low this selected friend’s consumption to consume the item.
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Fig. 5. Impact of parameter c.
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Fig. 6. The posterior expectation of acceptive threshold d for different user
with varying activeness, where the activeness of the user denotes the number
of items consumed by the user. Also, we presented the fitting linear in red.

η0 = p(xij = 1|xkj = 0, τijk = 1) denotes the probability

that the user will consume the item when the friend didn’t

consume it. From Table III, we can find that the expectation

of η1 is larger than 0.99, while the expectation of η0 is less than
0.01. This result validates the social conformity phenomenon

that the user will follow friend’s consumption when he makes

the decision on the consumption. Thus, when we model the

generative process of user’s consumption, we need consider

social influence to undo the effect caused by conformity for

better inferring user’s true preference on the items.

Parameter d for different users. It will be interesting to

explore the correlation between the acceptive threshold d and
the activeness of the user. Fig. 6 presents the posterior expec-

tation of parameter d for each user with varying activeness,

where the activeness denotes the number of items consumed

by the user. We can find the more active user corresponds to

the smaller d. It can be explained as follow: the users with

large acceptive threshold d, tend to be fastidious about the

items. These users usually don’t accept the items from friends

or systems. On the contrary, the generous users with small d,
tend to be tolerant towards varied kinds of items. Thus, more

items will be consumed by them.

VI. CONCLUSIONS

In this paper, we conduct a thorough analysis of real-world

social recommendation datasets and find that the observation

process of rating data depends on user’s preference and social

relations. Therefore, we integrate the missing not at random

assumption into social recommendation and propose a new

recommendation method SPMF-MNAR with a probabilistic

generative model of the rating observation process. Different

from existing social recommendation methods that exploit

social influence on users’ rating values, we focus on exploiting

the social influence on the rating observation process. Our

comprehensive experimental results clearly demonstrate the ef-

fectiveness of our proposed method compared to both existing

social recommendation methods and the non-social methods

based on MNAR.

In the future, it will be interesting to exploit more factors

which contribute to user’s consumption, such as item’s popu-

larity and user’s location. We can extend our SPMF-MNAR to

model these factors for better recommendation performance.

ACKNOWLEDGMENTS

This work is supported by Zhejiang University-LianlianPay

Joint Research Center and Zhejiang Provincial Key Research

and Development Plan (Grant no. 2017C01012).

APPENDIX

Here we describe the details of how we optimize the lower

bound L̃(q, ξ) and how we update the variational parameters

in the global step and local step.
Local step. As is shown in algorithm 1, in each step

we firstly subsample a set S of user-item pairs. Then, we
iteratively update the optimal parameter ξij and variational
parameters of local variables zij , τij for each user-item pair
(i, j) ∈ S as follows:

ξij ← c
√

(Λz
ij)

−1 + (μz
ij)

2 − 2μd
i μ

z
ij + (Λd

i )
−1

+ (μd
i )

2
(15)

λij ← 1

2ξij
(σ(ξij) − 1

2
) (16)

Λz
ij ← 1

σ2z
+

1

σ2r
+ 2λijc

2ϕij0 (17)

μz
ij ← (Λz

ij)
−1(

Ωij

σ2z
+

rij
σ2r

+ ϕij0(c(2xij − 1)/2 + 2λijc
2μd

i ))

(18)

ϕijk ∝ exp(Ψ(κβ
ik) + θijk)

θij0 = ln(σ(ξij)) +
(2xij − 1)c(μz

ij − μd
i ) − ξij

2

θijk = Ψ(eij
�κηfij) − Ψ(‖κηfij‖1), k = 1, 2, . . .

∣∣∣gi∣∣∣ (19)

where Ωij denotes the predicted average rating based on latent

features of users and items Ωij = (μ
u
i )

�(μvj )+μ
a
i +μ

b
j ; eij =

[xij , 1−xij ], fij = [1−xgikj , xgikj ] are two-dimensional binary
vector to indicate which part of κη contributes to the evaluation
of parameter ϕij ; ‖.‖1 is a l1 norm; Ψ(.) is Digamma function,
the first derivative of the log Gamma function. We find the

good convergence of the local iteration in local step and fix

the number of the local iteration at 10.
Global step. Here we first compute the natural gradient

[33] of the L̃ on the global variational parameters Ξ ≡
{μui , μvj , μdi ,μai , μbj , Λu

i ,Λ
v
j ,Λ

d
i ,Λ

a
i ,Λ

b
j ,κ

β
i , κ

η
l } to get the in-

termediate optimal global parameter Ξ̂ as follow:

Λ̂u
i ← 1

σ2z

∑
j∈I,(i,j)∈S

((Λv
j )

−1 + μv
j (μ

v
j )

�) +
1

σ2u
I (20)

μ̂u
i ← (Λu

i )
−1 1

σ2z

∑
j∈I,(i,j)∈S

(μz
ij − μa

i − μb
j)μ

v
j (21)

Λ̂v
j ← 1

σ2z

∑
i∈U,(i,j)∈S

((Λu
i )

−1 + μu
i (μ

u
i )

�) +
1

σ2v
I (22)

μ̂v
j ← (Λv

j )
−1 1

σ2z

∑
i∈U,(i,j)∈S

(μz
ij − μa

i − μb
j)μ

u
i (23)

Λ̂a
i ← 1

σ2z

∑
j∈I,(i,j)∈S

1 +
1

σ2u
(24)
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μ̂a
i ← (Λa

i )
−1 1

σ2z

∑
j∈I,(i,j)∈S

(μz
ij − (μu

i )
�(μv

j ) − μb
j) (25)

Λ̂b
j ← 1

σ2z

∑
i∈U,(i,j)∈S

1 +
1

σ2v
(26)

μ̂b
j ← (Λb

j)
−1 1

σ2z

∑
i∈U,(i,j)∈S

(μz
ij − μa

i − (μu
i )

�(μv
j )) (27)

κ̂β
i ← α +

∑
j∈I,(i,j)∈S

ϕij (28)

κ̂η
l ← ζ +

∑
(i,j)∈S,k=1,2...|gi|

eijϕijkI[xgi
k
j = l] (29)

Λ̂d
i ← 1

σ2d
+
∑

j∈I,(i,j)∈S

2ϕij0λijc
2

(30)

μd
i ← (Λd

i )
−1(

md

σ2d
+
∑

i∈U,(i,j)∈S

ϕij0(2λijc
2μz

ij − c(2xij − 1)

2
))

(31)

where I[.] is the binary indicator function. Having these

intermediate optimal global parameter Ξ̂, we can update the
global parameters Ξ with an appropriate step-size ρt as follow:

Ξ ← (1 − ρt)Ξ + ρtΞ̂ (32)
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